Configuring an RL Agent#
In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.
In the directory scripts/reinforcement_learning, you will find the scripts for
different RL libraries. These are organized into subdirectories named after the library name.
Each subdirectory contains the training and playing scripts for the library.
To configure a learning library with a specific task, you need to create a configuration file
for the learning agent. This configuration file is used to create an instance of the learning agent
and is used to configure the training process. Similar to the environment registration shown in
the Registering an Environment tutorial, you can register the learning agent with the
gymnasium.register method.
The Code#
As an example, we will look at the configuration included for the task Isaac-Cartpole-v0
in the isaaclab_tasks package. This is the same task that we used in the
Training with an RL Agent tutorial.
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
"rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
"sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
},
The Code Explained#
Under the attribute kwargs, we can see the configuration for the different learning libraries.
The key is the name of the library and the value is the path to the configuration instance.
This configuration instance can be a string, a class, or an instance of the class.
For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the
configuration YAML file for the RL-Games library. Meanwhile, the value of the key
"rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.
The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:
Specifying the configuration entry point as a string
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
},
)
Specifying the configuration entry point as a class
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
},
)
The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.
All the scripts in the scripts/reinforcement_learning directory are configured by default to read the
<library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.
For instance, the following code block shows how the train.py script reads the configuration
instance for the Stable-Baselines3 library:
Code for train.py with SB3
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import gymnasium as gym
79import logging
80import numpy as np
81import os
82import random
83import time
84from datetime import datetime
85
86from stable_baselines3 import PPO
87from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
88from stable_baselines3.common.vec_env import VecNormalize
89
90from isaaclab.envs import (
91 DirectMARLEnv,
92 DirectMARLEnvCfg,
93 DirectRLEnvCfg,
94 ManagerBasedRLEnvCfg,
95 multi_agent_to_single_agent,
96)
97from isaaclab.utils.dict import print_dict
98from isaaclab.utils.io import dump_yaml
99
100from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
101
102import isaaclab_tasks # noqa: F401
103from isaaclab_tasks.utils.hydra import hydra_task_config
104
105# import logger
106logger = logging.getLogger(__name__)
107# PLACEHOLDER: Extension template (do not remove this comment)
108
109
110@hydra_task_config(args_cli.task, args_cli.agent)
111def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
112 """Train with stable-baselines agent."""
113 # randomly sample a seed if seed = -1
114 if args_cli.seed == -1:
115 args_cli.seed = random.randint(0, 10000)
116
117 # override configurations with non-hydra CLI arguments
118 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
119 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
120 # max iterations for training
121 if args_cli.max_iterations is not None:
122 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
123
124 # set the environment seed
125 # note: certain randomizations occur in the environment initialization so we set the seed here
126 env_cfg.seed = agent_cfg["seed"]
127 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
128
129 # directory for logging into
130 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
131 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
132 print(f"[INFO] Logging experiment in directory: {log_root_path}")
133 # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
134 print(f"Exact experiment name requested from command line: {run_info}")
135 log_dir = os.path.join(log_root_path, run_info)
136 # dump the configuration into log-directory
137 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
138 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
139
140 # save command used to run the script
141 command = " ".join(sys.orig_argv)
142 (Path(log_dir) / "command.txt").write_text(command)
143
144 # post-process agent configuration
145 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
146 # read configurations about the agent-training
147 policy_arch = agent_cfg.pop("policy")
148 n_timesteps = agent_cfg.pop("n_timesteps")
149
150 # set the IO descriptors export flag if requested
151 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
152 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
153 else:
154 logger.warning(
155 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
156 )
157
158 # set the log directory for the environment (works for all environment types)
159 env_cfg.log_dir = log_dir
160
161 # create isaac environment
162 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
163
164 # convert to single-agent instance if required by the RL algorithm
165 if isinstance(env.unwrapped, DirectMARLEnv):
166 env = multi_agent_to_single_agent(env)
167
168 # wrap for video recording
169 if args_cli.video:
170 video_kwargs = {
171 "video_folder": os.path.join(log_dir, "videos", "train"),
172 "step_trigger": lambda step: step % args_cli.video_interval == 0,
173 "video_length": args_cli.video_length,
174 "disable_logger": True,
175 }
176 print("[INFO] Recording videos during training.")
177 print_dict(video_kwargs, nesting=4)
178 env = gym.wrappers.RecordVideo(env, **video_kwargs)
179
180 start_time = time.time()
181
182 # wrap around environment for stable baselines
183 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
184
185 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
186 norm_args = {}
187 for key in norm_keys:
188 if key in agent_cfg:
189 norm_args[key] = agent_cfg.pop(key)
190
191 if norm_args and norm_args.get("normalize_input"):
192 print(f"Normalizing input, {norm_args=}")
193 env = VecNormalize(
194 env,
195 training=True,
196 norm_obs=norm_args["normalize_input"],
197 norm_reward=norm_args.get("normalize_value", False),
198 clip_obs=norm_args.get("clip_obs", 100.0),
199 gamma=agent_cfg["gamma"],
200 clip_reward=np.inf,
201 )
202
203 # create agent from stable baselines
204 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
205 if args_cli.checkpoint is not None:
206 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
207
208 # callbacks for agent
209 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
210 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
211
212 # train the agent
213 with contextlib.suppress(KeyboardInterrupt):
214 agent.learn(
215 total_timesteps=n_timesteps,
216 callback=callbacks,
217 progress_bar=True,
218 log_interval=None,
219 )
220 # save the final model
221 agent.save(os.path.join(log_dir, "model"))
222 print("Saving to:")
223 print(os.path.join(log_dir, "model.zip"))
224
225 if isinstance(env, VecNormalize):
226 print("Saving normalization")
227 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
228
229 print(f"Training time: {round(time.time() - start_time, 2)} seconds")
230
231 # close the simulator
232 env.close()
233
234
235if __name__ == "__main__":
236 # run the main function
237 main()
238 # close sim app
239 simulation_app.close()
The argument --agent is used to specify the learning library to use. This is used to
retrieve the configuration instance from the kwargs dictionary. You can manually specify
alternate configuration instances by passing the --agent argument.
The Code Execution#
Since for the cartpole balancing task, RSL-RL library offers two configuration instances,
we can use the --agent argument to specify the configuration instance to use.
Training with the standard PPO configuration:
# standard PPO training ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --run_name ppo
Training with the PPO configuration with symmetry augmentation:
# PPO training with symmetry augmentation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_with_symmetry_data_augmentation # you can use hydra to disable symmetry augmentation but enable mirror loss computation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_without_symmetry_data_augmentation \ agent.algorithm.symmetry_cfg.use_data_augmentation=false
The --run_name argument is used to specify the name of the run. This is used to
create a directory for the run in the logs/rsl_rl/cartpole directory.