Configuring an RL Agent#
In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.
In the directory scripts/reinforcement_learning, you will find the scripts for
different RL libraries. These are organized into subdirectories named after the library name.
Each subdirectory contains the training and playing scripts for the library.
To configure a learning library with a specific task, you need to create a configuration file
for the learning agent. This configuration file is used to create an instance of the learning agent
and is used to configure the training process. Similar to the environment registration shown in
the Registering an Environment tutorial, you can register the learning agent with the
gymnasium.register method.
The Code#
As an example, we will look at the configuration included for the task Isaac-Cartpole-v0
in the isaaclab_tasks package. This is the same task that we used in the
Training with an RL Agent tutorial.
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
"rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
"sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
},
The Code Explained#
Under the attribute kwargs, we can see the configuration for the different learning libraries.
The key is the name of the library and the value is the path to the configuration instance.
This configuration instance can be a string, a class, or an instance of the class.
For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the
configuration YAML file for the RL-Games library. Meanwhile, the value of the key
"rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.
The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:
Specifying the configuration entry point as a string
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
},
)
Specifying the configuration entry point as a class
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
},
)
The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.
All the scripts in the scripts/reinforcement_learning directory are configured by default to read the
<library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.
For instance, the following code block shows how the train.py script reads the configuration
instance for the Stable-Baselines3 library:
Code for train.py with SB3
1# Copyright (c) 2022-2026, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import logging
79import os
80import random
81import time
82from datetime import datetime
83
84import gymnasium as gym
85import numpy as np
86from stable_baselines3 import PPO
87from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
88from stable_baselines3.common.vec_env import VecNormalize
89
90from isaaclab.envs import (
91 DirectMARLEnv,
92 DirectMARLEnvCfg,
93 DirectRLEnvCfg,
94 ManagerBasedRLEnvCfg,
95 multi_agent_to_single_agent,
96)
97from isaaclab.utils.dict import print_dict
98from isaaclab.utils.io import dump_yaml
99
100from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
101
102import isaaclab_tasks # noqa: F401
103from isaaclab_tasks.utils.hydra import hydra_task_config
104
105# import logger
106logger = logging.getLogger(__name__)
107# PLACEHOLDER: Extension template (do not remove this comment)
108
109
110@hydra_task_config(args_cli.task, args_cli.agent)
111def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
112 """Train with stable-baselines agent."""
113 # randomly sample a seed if seed = -1
114 if args_cli.seed == -1:
115 args_cli.seed = random.randint(0, 10000)
116
117 # override configurations with non-hydra CLI arguments
118 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
119 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
120 # max iterations for training
121 if args_cli.max_iterations is not None:
122 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
123
124 # set the environment seed
125 # note: certain randomizations occur in the environment initialization so we set the seed here
126 env_cfg.seed = agent_cfg["seed"]
127 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
128
129 # directory for logging into
130 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
131 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
132 print(f"[INFO] Logging experiment in directory: {log_root_path}")
133 # The Ray Tune workflow extracts experiment name using the logging line below, hence,
134 # do not change it (see PR #2346, comment-2819298849)
135 print(f"Exact experiment name requested from command line: {run_info}")
136 log_dir = os.path.join(log_root_path, run_info)
137 # dump the configuration into log-directory
138 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
139 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
140
141 # save command used to run the script
142 command = " ".join(sys.orig_argv)
143 (Path(log_dir) / "command.txt").write_text(command)
144
145 # post-process agent configuration
146 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
147 # read configurations about the agent-training
148 policy_arch = agent_cfg.pop("policy")
149 n_timesteps = agent_cfg.pop("n_timesteps")
150
151 # set the IO descriptors export flag if requested
152 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
153 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
154 else:
155 logger.warning(
156 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
157 )
158
159 # set the log directory for the environment (works for all environment types)
160 env_cfg.log_dir = log_dir
161
162 # create isaac environment
163 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
164
165 # convert to single-agent instance if required by the RL algorithm
166 if isinstance(env.unwrapped, DirectMARLEnv):
167 env = multi_agent_to_single_agent(env)
168
169 # wrap for video recording
170 if args_cli.video:
171 video_kwargs = {
172 "video_folder": os.path.join(log_dir, "videos", "train"),
173 "step_trigger": lambda step: step % args_cli.video_interval == 0,
174 "video_length": args_cli.video_length,
175 "disable_logger": True,
176 }
177 print("[INFO] Recording videos during training.")
178 print_dict(video_kwargs, nesting=4)
179 env = gym.wrappers.RecordVideo(env, **video_kwargs)
180
181 start_time = time.time()
182
183 # wrap around environment for stable baselines
184 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
185
186 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
187 norm_args = {}
188 for key in norm_keys:
189 if key in agent_cfg:
190 norm_args[key] = agent_cfg.pop(key)
191
192 if norm_args and norm_args.get("normalize_input"):
193 print(f"Normalizing input, {norm_args=}")
194 env = VecNormalize(
195 env,
196 training=True,
197 norm_obs=norm_args["normalize_input"],
198 norm_reward=norm_args.get("normalize_value", False),
199 clip_obs=norm_args.get("clip_obs", 100.0),
200 gamma=agent_cfg["gamma"],
201 clip_reward=np.inf,
202 )
203
204 # create agent from stable baselines
205 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
206 if args_cli.checkpoint is not None:
207 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
208
209 # callbacks for agent
210 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
211 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
212
213 # train the agent
214 with contextlib.suppress(KeyboardInterrupt):
215 agent.learn(
216 total_timesteps=n_timesteps,
217 callback=callbacks,
218 progress_bar=True,
219 log_interval=None,
220 )
221 # save the final model
222 agent.save(os.path.join(log_dir, "model"))
223 print("Saving to:")
224 print(os.path.join(log_dir, "model.zip"))
225
226 if isinstance(env, VecNormalize):
227 print("Saving normalization")
228 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
229
230 print(f"Training time: {round(time.time() - start_time, 2)} seconds")
231
232 # close the simulator
233 env.close()
234
235
236if __name__ == "__main__":
237 # run the main function
238 main()
239 # close sim app
240 simulation_app.close()
The argument --agent is used to specify the learning library to use. This is used to
retrieve the configuration instance from the kwargs dictionary. You can manually specify
alternate configuration instances by passing the --agent argument.
The Code Execution#
Since for the cartpole balancing task, RSL-RL library offers two configuration instances,
we can use the --agent argument to specify the configuration instance to use.
Training with the standard PPO configuration:
# standard PPO training ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --run_name ppo
Training with the PPO configuration with symmetry augmentation:
# PPO training with symmetry augmentation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_with_symmetry_data_augmentation # you can use hydra to disable symmetry augmentation but enable mirror loss computation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_without_symmetry_data_augmentation \ agent.algorithm.symmetry_cfg.use_data_augmentation=false
The --run_name argument is used to specify the name of the run. This is used to
create a directory for the run in the logs/rsl_rl/cartpole directory.