Configuring an RL Agent

Configuring an RL Agent#

In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.

In the directory scripts/reinforcement_learning, you will find the scripts for different RL libraries. These are organized into subdirectories named after the library name. Each subdirectory contains the training and playing scripts for the library.

To configure a learning library with a specific task, you need to create a configuration file for the learning agent. This configuration file is used to create an instance of the learning agent and is used to configure the training process. Similar to the environment registration shown in the Registering an Environment tutorial, you can register the learning agent with the gymnasium.register method.

The Code#

As an example, we will look at the configuration included for the task Isaac-Cartpole-v0 in the isaaclab_tasks package. This is the same task that we used in the Training with an RL Agent tutorial.

gym.register(
    id="Isaac-Cartpole-v0",
    entry_point="isaaclab.envs:ManagerBasedRLEnv",
    disable_env_checker=True,
    kwargs={
        "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
        "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
        "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
        "rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
        "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
        "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
    },

The Code Explained#

Under the attribute kwargs, we can see the configuration for the different learning libraries. The key is the name of the library and the value is the path to the configuration instance. This configuration instance can be a string, a class, or an instance of the class. For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the configuration YAML file for the RL-Games library. Meanwhile, the value of the key "rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.

The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:

Specifying the configuration entry point as a string
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
   },
)
Specifying the configuration entry point as a class
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
   },
)

The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.

All the scripts in the scripts/reinforcement_learning directory are configured by default to read the <library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.

For instance, the following code block shows how the train.py script reads the configuration instance for the Stable-Baselines3 library:

Code for train.py with SB3
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6
  7"""Script to train RL agent with Stable Baselines3."""
  8
  9"""Launch Isaac Sim Simulator first."""
 10
 11import argparse
 12import contextlib
 13import signal
 14import sys
 15from pathlib import Path
 16
 17from isaaclab.app import AppLauncher
 18
 19# add argparse arguments
 20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
 21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
 22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
 23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
 24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
 25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
 26parser.add_argument(
 27    "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
 28)
 29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
 30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
 31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
 32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
 33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
 34parser.add_argument(
 35    "--keep_all_info",
 36    action="store_true",
 37    default=False,
 38    help="Use a slower SB3 wrapper but keep all the extra training info.",
 39)
 40parser.add_argument(
 41    "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
 42)
 43# append AppLauncher cli args
 44AppLauncher.add_app_launcher_args(parser)
 45# parse the arguments
 46args_cli, hydra_args = parser.parse_known_args()
 47# always enable cameras to record video
 48if args_cli.video:
 49    args_cli.enable_cameras = True
 50
 51# clear out sys.argv for Hydra
 52sys.argv = [sys.argv[0]] + hydra_args
 53
 54# launch omniverse app
 55app_launcher = AppLauncher(args_cli)
 56simulation_app = app_launcher.app
 57
 58
 59def cleanup_pbar(*args):
 60    """
 61    A small helper to stop training and
 62    cleanup progress bar properly on ctrl+c
 63    """
 64    import gc
 65
 66    tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
 67    for tqdm_object in tqdm_objects:
 68        if "tqdm_rich" in type(tqdm_object).__name__:
 69            tqdm_object.close()
 70    raise KeyboardInterrupt
 71
 72
 73# disable KeyboardInterrupt override
 74signal.signal(signal.SIGINT, cleanup_pbar)
 75
 76"""Rest everything follows."""
 77
 78import gymnasium as gym
 79import logging
 80import numpy as np
 81import os
 82import random
 83import time
 84from datetime import datetime
 85
 86from stable_baselines3 import PPO
 87from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
 88from stable_baselines3.common.vec_env import VecNormalize
 89
 90from isaaclab.envs import (
 91    DirectMARLEnv,
 92    DirectMARLEnvCfg,
 93    DirectRLEnvCfg,
 94    ManagerBasedRLEnvCfg,
 95    multi_agent_to_single_agent,
 96)
 97from isaaclab.utils.dict import print_dict
 98from isaaclab.utils.io import dump_yaml
 99
100from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
101
102import isaaclab_tasks  # noqa: F401
103from isaaclab_tasks.utils.hydra import hydra_task_config
104
105# import logger
106logger = logging.getLogger(__name__)
107# PLACEHOLDER: Extension template (do not remove this comment)
108
109
110@hydra_task_config(args_cli.task, args_cli.agent)
111def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
112    """Train with stable-baselines agent."""
113    # randomly sample a seed if seed = -1
114    if args_cli.seed == -1:
115        args_cli.seed = random.randint(0, 10000)
116
117    # override configurations with non-hydra CLI arguments
118    env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
119    agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
120    # max iterations for training
121    if args_cli.max_iterations is not None:
122        agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
123
124    # set the environment seed
125    # note: certain randomizations occur in the environment initialization so we set the seed here
126    env_cfg.seed = agent_cfg["seed"]
127    env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
128
129    # directory for logging into
130    run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
131    log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
132    print(f"[INFO] Logging experiment in directory: {log_root_path}")
133    # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
134    print(f"Exact experiment name requested from command line: {run_info}")
135    log_dir = os.path.join(log_root_path, run_info)
136    # dump the configuration into log-directory
137    dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
138    dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
139
140    # save command used to run the script
141    command = " ".join(sys.orig_argv)
142    (Path(log_dir) / "command.txt").write_text(command)
143
144    # post-process agent configuration
145    agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
146    # read configurations about the agent-training
147    policy_arch = agent_cfg.pop("policy")
148    n_timesteps = agent_cfg.pop("n_timesteps")
149
150    # set the IO descriptors export flag if requested
151    if isinstance(env_cfg, ManagerBasedRLEnvCfg):
152        env_cfg.export_io_descriptors = args_cli.export_io_descriptors
153    else:
154        logger.warning(
155            "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
156        )
157
158    # set the log directory for the environment (works for all environment types)
159    env_cfg.log_dir = log_dir
160
161    # create isaac environment
162    env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
163
164    # convert to single-agent instance if required by the RL algorithm
165    if isinstance(env.unwrapped, DirectMARLEnv):
166        env = multi_agent_to_single_agent(env)
167
168    # wrap for video recording
169    if args_cli.video:
170        video_kwargs = {
171            "video_folder": os.path.join(log_dir, "videos", "train"),
172            "step_trigger": lambda step: step % args_cli.video_interval == 0,
173            "video_length": args_cli.video_length,
174            "disable_logger": True,
175        }
176        print("[INFO] Recording videos during training.")
177        print_dict(video_kwargs, nesting=4)
178        env = gym.wrappers.RecordVideo(env, **video_kwargs)
179
180    start_time = time.time()
181
182    # wrap around environment for stable baselines
183    env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
184
185    norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
186    norm_args = {}
187    for key in norm_keys:
188        if key in agent_cfg:
189            norm_args[key] = agent_cfg.pop(key)
190
191    if norm_args and norm_args.get("normalize_input"):
192        print(f"Normalizing input, {norm_args=}")
193        env = VecNormalize(
194            env,
195            training=True,
196            norm_obs=norm_args["normalize_input"],
197            norm_reward=norm_args.get("normalize_value", False),
198            clip_obs=norm_args.get("clip_obs", 100.0),
199            gamma=agent_cfg["gamma"],
200            clip_reward=np.inf,
201        )
202
203    # create agent from stable baselines
204    agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
205    if args_cli.checkpoint is not None:
206        agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
207
208    # callbacks for agent
209    checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
210    callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
211
212    # train the agent
213    with contextlib.suppress(KeyboardInterrupt):
214        agent.learn(
215            total_timesteps=n_timesteps,
216            callback=callbacks,
217            progress_bar=True,
218            log_interval=None,
219        )
220    # save the final model
221    agent.save(os.path.join(log_dir, "model"))
222    print("Saving to:")
223    print(os.path.join(log_dir, "model.zip"))
224
225    if isinstance(env, VecNormalize):
226        print("Saving normalization")
227        env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
228
229    print(f"Training time: {round(time.time() - start_time, 2)} seconds")
230
231    # close the simulator
232    env.close()
233
234
235if __name__ == "__main__":
236    # run the main function
237    main()
238    # close sim app
239    simulation_app.close()

The argument --agent is used to specify the learning library to use. This is used to retrieve the configuration instance from the kwargs dictionary. You can manually specify alternate configuration instances by passing the --agent argument.

The Code Execution#

Since for the cartpole balancing task, RSL-RL library offers two configuration instances, we can use the --agent argument to specify the configuration instance to use.

  • Training with the standard PPO configuration:

    # standard PPO training
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --run_name ppo
    
  • Training with the PPO configuration with symmetry augmentation:

    # PPO training with symmetry augmentation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_with_symmetry_data_augmentation
    
    # you can use hydra to disable symmetry augmentation but enable mirror loss computation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_without_symmetry_data_augmentation \
      agent.algorithm.symmetry_cfg.use_data_augmentation=false
    

The --run_name argument is used to specify the name of the run. This is used to create a directory for the run in the logs/rsl_rl/cartpole directory.