Configuring an RL Agent#
In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.
In the directory scripts/reinforcement_learning, you will find the scripts for
different RL libraries. These are organized into subdirectories named after the library name.
Each subdirectory contains the training and playing scripts for the library.
To configure a learning library with a specific task, you need to create a configuration file
for the learning agent. This configuration file is used to create an instance of the learning agent
and is used to configure the training process. Similar to the environment registration shown in
the Registering an Environment tutorial, you can register the learning agent with the
gymnasium.register method.
The Code#
As an example, we will look at the configuration included for the task Isaac-Cartpole-v0
in the isaaclab_tasks package. This is the same task that we used in the
Training with an RL Agent tutorial.
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
"rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
"sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
},
The Code Explained#
Under the attribute kwargs, we can see the configuration for the different learning libraries.
The key is the name of the library and the value is the path to the configuration instance.
This configuration instance can be a string, a class, or an instance of the class.
For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the
configuration YAML file for the RL-Games library. Meanwhile, the value of the key
"rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.
The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:
Specifying the configuration entry point as a string
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
},
)
Specifying the configuration entry point as a class
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
},
)
The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.
All the scripts in the scripts/reinforcement_learning directory are configured by default to read the
<library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.
For instance, the following code block shows how the train.py script reads the configuration
instance for the Stable-Baselines3 library:
Code for train.py with SB3
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import gymnasium as gym
79import logging
80import numpy as np
81import os
82import random
83from datetime import datetime
84
85from stable_baselines3 import PPO
86from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
87from stable_baselines3.common.vec_env import VecNormalize
88
89from isaaclab.envs import (
90 DirectMARLEnv,
91 DirectMARLEnvCfg,
92 DirectRLEnvCfg,
93 ManagerBasedRLEnvCfg,
94 multi_agent_to_single_agent,
95)
96from isaaclab.utils.dict import print_dict
97from isaaclab.utils.io import dump_yaml
98
99from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
100
101import isaaclab_tasks # noqa: F401
102from isaaclab_tasks.utils.hydra import hydra_task_config
103
104# import logger
105logger = logging.getLogger(__name__)
106# PLACEHOLDER: Extension template (do not remove this comment)
107
108
109@hydra_task_config(args_cli.task, args_cli.agent)
110def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
111 """Train with stable-baselines agent."""
112 # randomly sample a seed if seed = -1
113 if args_cli.seed == -1:
114 args_cli.seed = random.randint(0, 10000)
115
116 # override configurations with non-hydra CLI arguments
117 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
118 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
119 # max iterations for training
120 if args_cli.max_iterations is not None:
121 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
122
123 # set the environment seed
124 # note: certain randomizations occur in the environment initialization so we set the seed here
125 env_cfg.seed = agent_cfg["seed"]
126 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
127
128 # directory for logging into
129 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
130 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
131 print(f"[INFO] Logging experiment in directory: {log_root_path}")
132 # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
133 print(f"Exact experiment name requested from command line: {run_info}")
134 log_dir = os.path.join(log_root_path, run_info)
135 # dump the configuration into log-directory
136 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
137 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
138
139 # save command used to run the script
140 command = " ".join(sys.orig_argv)
141 (Path(log_dir) / "command.txt").write_text(command)
142
143 # post-process agent configuration
144 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
145 # read configurations about the agent-training
146 policy_arch = agent_cfg.pop("policy")
147 n_timesteps = agent_cfg.pop("n_timesteps")
148
149 # set the IO descriptors export flag if requested
150 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
151 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
152 else:
153 logger.warning(
154 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
155 )
156
157 # set the log directory for the environment (works for all environment types)
158 env_cfg.log_dir = log_dir
159
160 # create isaac environment
161 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
162
163 # convert to single-agent instance if required by the RL algorithm
164 if isinstance(env.unwrapped, DirectMARLEnv):
165 env = multi_agent_to_single_agent(env)
166
167 # wrap for video recording
168 if args_cli.video:
169 video_kwargs = {
170 "video_folder": os.path.join(log_dir, "videos", "train"),
171 "step_trigger": lambda step: step % args_cli.video_interval == 0,
172 "video_length": args_cli.video_length,
173 "disable_logger": True,
174 }
175 print("[INFO] Recording videos during training.")
176 print_dict(video_kwargs, nesting=4)
177 env = gym.wrappers.RecordVideo(env, **video_kwargs)
178
179 # wrap around environment for stable baselines
180 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
181
182 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
183 norm_args = {}
184 for key in norm_keys:
185 if key in agent_cfg:
186 norm_args[key] = agent_cfg.pop(key)
187
188 if norm_args and norm_args.get("normalize_input"):
189 print(f"Normalizing input, {norm_args=}")
190 env = VecNormalize(
191 env,
192 training=True,
193 norm_obs=norm_args["normalize_input"],
194 norm_reward=norm_args.get("normalize_value", False),
195 clip_obs=norm_args.get("clip_obs", 100.0),
196 gamma=agent_cfg["gamma"],
197 clip_reward=np.inf,
198 )
199
200 # create agent from stable baselines
201 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
202 if args_cli.checkpoint is not None:
203 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
204
205 # callbacks for agent
206 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
207 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
208
209 # train the agent
210 with contextlib.suppress(KeyboardInterrupt):
211 agent.learn(
212 total_timesteps=n_timesteps,
213 callback=callbacks,
214 progress_bar=True,
215 log_interval=None,
216 )
217 # save the final model
218 agent.save(os.path.join(log_dir, "model"))
219 print("Saving to:")
220 print(os.path.join(log_dir, "model.zip"))
221
222 if isinstance(env, VecNormalize):
223 print("Saving normalization")
224 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
225
226 # close the simulator
227 env.close()
228
229
230if __name__ == "__main__":
231 # run the main function
232 main()
233 # close sim app
234 simulation_app.close()
The argument --agent is used to specify the learning library to use. This is used to
retrieve the configuration instance from the kwargs dictionary. You can manually specify
alternate configuration instances by passing the --agent argument.
The Code Execution#
Since for the cartpole balancing task, RSL-RL library offers two configuration instances,
we can use the --agent argument to specify the configuration instance to use.
Training with the standard PPO configuration:
# standard PPO training ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --run_name ppo
Training with the PPO configuration with symmetry augmentation:
# PPO training with symmetry augmentation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_with_symmetry_data_augmentation # you can use hydra to disable symmetry augmentation but enable mirror loss computation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_without_symmetry_data_augmentation \ agent.algorithm.symmetry_cfg.use_data_augmentation=false
The --run_name argument is used to specify the name of the run. This is used to
create a directory for the run in the logs/rsl_rl/cartpole directory.