Using a task-space controller#
In the previous tutorials, we have joint-space controllers to control the robot. However, in many cases, it is more intuitive to control the robot using a task-space controller. For example, if we want to teleoperate the robot, it is easier to specify the desired end-effector pose rather than the desired joint positions.
In this tutorial, we will learn how to use a task-space controller to control the robot.
We will use the controllers.DifferentialIKController
class to track a desired
end-effector pose command.
The Code#
The tutorial corresponds to the run_diff_ik.py
script in the
source/standalone/tutorials/05_controllers
directory.
Code for run_diff_ik.py
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6"""
7This script demonstrates how to use the differential inverse kinematics controller with the simulator.
8
9The differential IK controller can be configured in different modes. It uses the Jacobians computed by
10PhysX. This helps perform parallelized computation of the inverse kinematics.
11
12.. code-block:: bash
13
14 # Usage
15 ./isaaclab.sh -p source/standalone/tutorials/05_controllers/ik_control.py
16
17"""
18
19"""Launch Isaac Sim Simulator first."""
20
21import argparse
22
23from omni.isaac.lab.app import AppLauncher
24
25# add argparse arguments
26parser = argparse.ArgumentParser(description="Tutorial on using the differential IK controller.")
27parser.add_argument("--robot", type=str, default="franka_panda", help="Name of the robot.")
28parser.add_argument("--num_envs", type=int, default=128, help="Number of environments to spawn.")
29# append AppLauncher cli args
30AppLauncher.add_app_launcher_args(parser)
31# parse the arguments
32args_cli = parser.parse_args()
33
34# launch omniverse app
35app_launcher = AppLauncher(args_cli)
36simulation_app = app_launcher.app
37
38"""Rest everything follows."""
39
40import torch
41
42import omni.isaac.lab.sim as sim_utils
43from omni.isaac.lab.assets import AssetBaseCfg
44from omni.isaac.lab.controllers import DifferentialIKController, DifferentialIKControllerCfg
45from omni.isaac.lab.managers import SceneEntityCfg
46from omni.isaac.lab.markers import VisualizationMarkers
47from omni.isaac.lab.markers.config import FRAME_MARKER_CFG
48from omni.isaac.lab.scene import InteractiveScene, InteractiveSceneCfg
49from omni.isaac.lab.utils import configclass
50from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR
51from omni.isaac.lab.utils.math import subtract_frame_transforms
52
53##
54# Pre-defined configs
55##
56from omni.isaac.lab_assets import FRANKA_PANDA_HIGH_PD_CFG, UR10_CFG # isort:skip
57
58
59@configclass
60class TableTopSceneCfg(InteractiveSceneCfg):
61 """Configuration for a cart-pole scene."""
62
63 # ground plane
64 ground = AssetBaseCfg(
65 prim_path="/World/defaultGroundPlane",
66 spawn=sim_utils.GroundPlaneCfg(),
67 init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, -1.05)),
68 )
69
70 # lights
71 dome_light = AssetBaseCfg(
72 prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
73 )
74
75 # mount
76 table = AssetBaseCfg(
77 prim_path="{ENV_REGEX_NS}/Table",
78 spawn=sim_utils.UsdFileCfg(
79 usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/Stand/stand_instanceable.usd", scale=(2.0, 2.0, 2.0)
80 ),
81 )
82
83 # articulation
84 if args_cli.robot == "franka_panda":
85 robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
86 elif args_cli.robot == "ur10":
87 robot = UR10_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
88 else:
89 raise ValueError(f"Robot {args_cli.robot} is not supported. Valid: franka_panda, ur10")
90
91
92def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
93 """Runs the simulation loop."""
94 # Extract scene entities
95 # note: we only do this here for readability.
96 robot = scene["robot"]
97
98 # Create controller
99 diff_ik_cfg = DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls")
100 diff_ik_controller = DifferentialIKController(diff_ik_cfg, num_envs=scene.num_envs, device=sim.device)
101
102 # Markers
103 frame_marker_cfg = FRAME_MARKER_CFG.copy()
104 frame_marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1)
105 ee_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_current"))
106 goal_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_goal"))
107
108 # Define goals for the arm
109 ee_goals = [
110 [0.5, 0.5, 0.7, 0.707, 0, 0.707, 0],
111 [0.5, -0.4, 0.6, 0.707, 0.707, 0.0, 0.0],
112 [0.5, 0, 0.5, 0.0, 1.0, 0.0, 0.0],
113 ]
114 ee_goals = torch.tensor(ee_goals, device=sim.device)
115 # Track the given command
116 current_goal_idx = 0
117 # Create buffers to store actions
118 ik_commands = torch.zeros(scene.num_envs, diff_ik_controller.action_dim, device=robot.device)
119 ik_commands[:] = ee_goals[current_goal_idx]
120
121 # Specify robot-specific parameters
122 if args_cli.robot == "franka_panda":
123 robot_entity_cfg = SceneEntityCfg("robot", joint_names=["panda_joint.*"], body_names=["panda_hand"])
124 elif args_cli.robot == "ur10":
125 robot_entity_cfg = SceneEntityCfg("robot", joint_names=[".*"], body_names=["ee_link"])
126 else:
127 raise ValueError(f"Robot {args_cli.robot} is not supported. Valid: franka_panda, ur10")
128 # Resolving the scene entities
129 robot_entity_cfg.resolve(scene)
130 # Obtain the frame index of the end-effector
131 # For a fixed base robot, the frame index is one less than the body index. This is because
132 # the root body is not included in the returned Jacobians.
133 if robot.is_fixed_base:
134 ee_jacobi_idx = robot_entity_cfg.body_ids[0] - 1
135 else:
136 ee_jacobi_idx = robot_entity_cfg.body_ids[0]
137
138 # Define simulation stepping
139 sim_dt = sim.get_physics_dt()
140 count = 0
141 # Simulation loop
142 while simulation_app.is_running():
143 # reset
144 if count % 150 == 0:
145 # reset time
146 count = 0
147 # reset joint state
148 joint_pos = robot.data.default_joint_pos.clone()
149 joint_vel = robot.data.default_joint_vel.clone()
150 robot.write_joint_state_to_sim(joint_pos, joint_vel)
151 robot.reset()
152 # reset actions
153 ik_commands[:] = ee_goals[current_goal_idx]
154 joint_pos_des = joint_pos[:, robot_entity_cfg.joint_ids].clone()
155 # reset controller
156 diff_ik_controller.reset()
157 diff_ik_controller.set_command(ik_commands)
158 # change goal
159 current_goal_idx = (current_goal_idx + 1) % len(ee_goals)
160 else:
161 # obtain quantities from simulation
162 jacobian = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, robot_entity_cfg.joint_ids]
163 ee_pose_w = robot.data.body_state_w[:, robot_entity_cfg.body_ids[0], 0:7]
164 root_pose_w = robot.data.root_state_w[:, 0:7]
165 joint_pos = robot.data.joint_pos[:, robot_entity_cfg.joint_ids]
166 # compute frame in root frame
167 ee_pos_b, ee_quat_b = subtract_frame_transforms(
168 root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7]
169 )
170 # compute the joint commands
171 joint_pos_des = diff_ik_controller.compute(ee_pos_b, ee_quat_b, jacobian, joint_pos)
172
173 # apply actions
174 robot.set_joint_position_target(joint_pos_des, joint_ids=robot_entity_cfg.joint_ids)
175 scene.write_data_to_sim()
176 # perform step
177 sim.step()
178 # update sim-time
179 count += 1
180 # update buffers
181 scene.update(sim_dt)
182
183 # obtain quantities from simulation
184 ee_pose_w = robot.data.body_state_w[:, robot_entity_cfg.body_ids[0], 0:7]
185 # update marker positions
186 ee_marker.visualize(ee_pose_w[:, 0:3], ee_pose_w[:, 3:7])
187 goal_marker.visualize(ik_commands[:, 0:3] + scene.env_origins, ik_commands[:, 3:7])
188
189
190def main():
191 """Main function."""
192 # Load kit helper
193 sim_cfg = sim_utils.SimulationCfg(dt=0.01, device=args_cli.device)
194 sim = sim_utils.SimulationContext(sim_cfg)
195 # Set main camera
196 sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0])
197 # Design scene
198 scene_cfg = TableTopSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
199 scene = InteractiveScene(scene_cfg)
200 # Play the simulator
201 sim.reset()
202 # Now we are ready!
203 print("[INFO]: Setup complete...")
204 # Run the simulator
205 run_simulator(sim, scene)
206
207
208if __name__ == "__main__":
209 # run the main function
210 main()
211 # close sim app
212 simulation_app.close()
The Code Explained#
While using any task-space controller, it is important to ensure that the provided
quantities are in the correct frames. When parallelizing environment instances, they are
all existing in the same unique simulation world frame. However, typically, we want each
environment itself to have its own local frame. This is accessible through the
scene.InteractiveScene.env_origins
attribute.
In our APIs, we use the following notation for frames:
The simulation world frame (denoted as
w
), which is the frame of the entire simulation.The local environment frame (denoted as
e
), which is the frame of the local environment.The robot’s base frame (denoted as
b
), which is the frame of the robot’s base link.
Since the asset instances are not “aware” of the local environment frame, they return their states in the simulation world frame. Thus, we need to convert the obtained quantities to the local environment frame. This is done by subtracting the local environment origin from the obtained quantities.
Creating an IK controller#
The DifferentialIKController
class computes the desired joint
positions for a robot to reach a desired end-effector pose. The included implementation
performs the computation in a batched format and uses PyTorch operations. It supports
different types of inverse kinematics solvers, including the damped least-squares method
and the pseudo-inverse method. These solvers can be specified using the
ik_method
argument.
Additionally, the controller can handle commands as both relative and absolute poses.
In this tutorial, we will use the damped least-squares method to compute the desired joint positions. Additionally, since we want to track desired end-effector poses, we will use the absolute pose command mode.
# Create controller
diff_ik_cfg = DifferentialIKControllerCfg(command_type="pose", use_relative_mode=False, ik_method="dls")
diff_ik_controller = DifferentialIKController(diff_ik_cfg, num_envs=scene.num_envs, device=sim.device)
Obtaining the robot’s joint and body indices#
The IK controller implementation is a computation-only class. Thus, it expects the user to provide the necessary information about the robot. This includes the robot’s joint positions, current end-effector pose, and the Jacobian matrix.
While the attribute assets.ArticulationData.joint_pos
provides the joint positions,
we only want the joint positions of the robot’s arm, and not the gripper. Similarly, while
the attribute assets.Articulationdata.body_state_w
provides the state of all the
robot’s bodies, we only want the state of the robot’s end-effector. Thus, we need to
index into these arrays to obtain the desired quantities.
For this, the articulation class provides the methods find_joints()
and find_bodies()
. These methods take in the names of the joints
and bodies and return their corresponding indices.
While you may directly use these methods to obtain the indices, we recommend using the
SceneEntityCfg
class to resolve the indices. This class is used in various
places in the APIs to extract certain information from a scene entity. Internally, it
calls the above methods to obtain the indices. However, it also performs some additional
checks to ensure that the provided names are valid. Thus, it is a safer option to use
this class.
# Specify robot-specific parameters
if args_cli.robot == "franka_panda":
robot_entity_cfg = SceneEntityCfg("robot", joint_names=["panda_joint.*"], body_names=["panda_hand"])
elif args_cli.robot == "ur10":
robot_entity_cfg = SceneEntityCfg("robot", joint_names=[".*"], body_names=["ee_link"])
else:
raise ValueError(f"Robot {args_cli.robot} is not supported. Valid: franka_panda, ur10")
# Resolving the scene entities
robot_entity_cfg.resolve(scene)
# Obtain the frame index of the end-effector
# For a fixed base robot, the frame index is one less than the body index. This is because
# the root body is not included in the returned Jacobians.
if robot.is_fixed_base:
ee_jacobi_idx = robot_entity_cfg.body_ids[0] - 1
else:
ee_jacobi_idx = robot_entity_cfg.body_ids[0]
Computing robot command#
The IK controller separates the operation of setting the desired command and computing the desired joint positions. This is done to allow for the user to run the IK controller at a different frequency than the robot’s control frequency.
The set_command()
method takes in
the desired end-effector pose as a single batched array. The pose is specified in
the robot’s base frame.
# reset controller
diff_ik_controller.reset()
diff_ik_controller.set_command(ik_commands)
We can then compute the desired joint positions using the
compute()
method.
The method takes in the current end-effector pose (in base frame), Jacobian, and
current joint positions. We read the Jacobian matrix from the robot’s data, which uses
its value computed from the physics engine.
# obtain quantities from simulation
jacobian = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, robot_entity_cfg.joint_ids]
ee_pose_w = robot.data.body_state_w[:, robot_entity_cfg.body_ids[0], 0:7]
root_pose_w = robot.data.root_state_w[:, 0:7]
joint_pos = robot.data.joint_pos[:, robot_entity_cfg.joint_ids]
# compute frame in root frame
ee_pos_b, ee_quat_b = subtract_frame_transforms(
root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7]
)
# compute the joint commands
joint_pos_des = diff_ik_controller.compute(ee_pos_b, ee_quat_b, jacobian, joint_pos)
The computed joint position targets can then be applied on the robot, as done in the previous tutorials.
# apply actions
robot.set_joint_position_target(joint_pos_des, joint_ids=robot_entity_cfg.joint_ids)
scene.write_data_to_sim()
The Code Execution#
Now that we have gone through the code, let’s run the script and see the result:
./isaaclab.sh -p source/standalone/tutorials/05_controllers/run_diff_ik.py --robot franka_panda --num_envs 128
The script will start a simulation with 128 robots. The robots will be controlled using the IK controller. The current and desired end-effector poses should be displayed using frame markers. When the robot reaches the desired pose, the command should cycle through to the next pose specified in the script.
To stop the simulation, you can either close the window, or press Ctrl+C
in the terminal.