Reinforcement Learning Wrappers#
We provide wrappers to different reinforcement libraries. These wrappers convert the data from the environments into the respective libraries function argument and return types.
RL-Games#
Training an agent with RL-Games on
Isaac-Ant-v0
:# install python module (for rl-games) ./isaaclab.sh -i rl_games # run script for training ./isaaclab.sh -p source/standalone/workflows/rl_games/train.py --task Isaac-Ant-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --headless --video --video_length 200
:: install python module (for rl-games) isaaclab.bat -i rl_games :: run script for training isaaclab.bat -p source\standalone\workflows\rl_games\train.py --task Isaac-Ant-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --headless --video --video_length 200
RSL-RL#
Training an agent with RSL-RL on
Isaac-Reach-Franka-v0
:# install python module (for rsl-rl) ./isaaclab.sh -i rsl_rl # run script for training ./isaaclab.sh -p source/standalone/workflows/rsl_rl/train.py --task Isaac-Reach-Franka-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
:: install python module (for rsl-rl) isaaclab.bat -i rsl_rl :: run script for training isaaclab.bat -p source\standalone\workflows\rsl_rl\train.py --task Isaac-Reach-Franka-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
SKRL#
Training an agent with SKRL on
Isaac-Reach-Franka-v0
:# install python module (for skrl) ./isaaclab.sh -i skrl # run script for training ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
:: install python module (for skrl) isaaclab.bat -i skrl :: run script for training isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Reach-Franka-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
Warning
It is recommended to install JAX manually before proceeding to install skrl and its dependencies, as JAX installs its CPU version by default. For example,
pip install -U "jax[cuda12]"
can be used to install JAX for CUDA 12. Visit the skrl installation page for more details.# install python module (for skrl) ./isaaclab.sh -i skrl # install skrl dependencies for JAX ./isaaclab.sh -p -m pip install skrl["jax"] # run script for training ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --ml_framework jax --checkpoint /PATH/TO/model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax --video --video_length 200
Training the multi-agent environment
Isaac-Shadow-Hand-Over-Direct-v0
with skrl:
# install python module (for skrl) ./isaaclab.sh -i skrl # run script for training with the MAPPO algorithm (IPPO is also supported) ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO # run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
:: install python module (for skrl) isaaclab.bat -i skrl :: run script for training with the MAPPO algorithm (IPPO is also supported) isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO :: run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported) isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
Stable-Baselines3#
Training an agent with Stable-Baselines3 on
Isaac-Cartpole-v0
:# install python module (for stable-baselines3) ./isaaclab.sh -i sb3 # run script for training # note: we set the device to cpu since SB3 doesn't optimize for GPU anyway ./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --headless --device cpu # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
:: install python module (for stable-baselines3) isaaclab.bat -i sb3 :: run script for training :: note: we set the device to cpu since SB3 doesn't optimize for GPU anyway isaaclab.bat -p source\standalone\workflows\sb3\train.py --task Isaac-Cartpole-v0 --headless --device cpu :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
All the scripts above log the training progress to Tensorboard in the logs
directory in the root of
the repository. The logs directory follows the pattern logs/<library>/<task>/<date-time>
, where <library>
is the name of the learning framework, <task>
is the task name, and <date-time>
is the timestamp at
which the training script was executed.
To view the logs, run:
# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir=logs
:: execute from the root directory of the repository
isaaclab.bat -p -m tensorboard.main --logdir=logs