Training with an RL Agent#
In the previous tutorials, we covered how to define an RL task environment, register
it into the gym registry, and interact with it using a random agent. We now move
on to the next step: training an RL agent to solve the task.
Although the envs.ManagerBasedRLEnv conforms to the gymnasium.Env interface,
it is not exactly a gym environment. The input and outputs of the environment are
not numpy arrays, but rather based on torch tensors with the first dimension being the
number of environment instances.
Additionally, most RL libraries expect their own variation of an environment interface.
For example, Stable-Baselines3 expects the environment to conform to its
VecEnv API which expects a list of numpy arrays instead of a single tensor. Similarly,
RSL-RL, RL-Games and SKRL expect a different interface. Since there is no one-size-fits-all
solution, we do not base the envs.ManagerBasedRLEnv on any particular learning library.
Instead, we implement wrappers to convert the environment into the expected interface.
These are specified in the isaaclab_rl module.
In this tutorial, we will use Stable-Baselines3 to train an RL agent to solve the cartpole balancing task.
Caution
Wrapping the environment with the respective learning framework’s wrapper should happen in the end,
i.e. after all other wrappers have been applied. This is because the learning framework’s wrapper
modifies the interpretation of environment’s APIs which may no longer be compatible with gymnasium.Env.
The Code#
For this tutorial, we use the training script from Stable-Baselines3 workflow in the
scripts/reinforcement_learning/sb3 directory.
Code for train.py
1# Copyright (c) 2022-2026, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import logging
79import os
80import random
81import time
82from datetime import datetime
83
84import gymnasium as gym
85import numpy as np
86from stable_baselines3 import PPO
87from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
88from stable_baselines3.common.vec_env import VecNormalize
89
90from isaaclab.envs import (
91 DirectMARLEnv,
92 DirectMARLEnvCfg,
93 DirectRLEnvCfg,
94 ManagerBasedRLEnvCfg,
95 multi_agent_to_single_agent,
96)
97from isaaclab.utils.dict import print_dict
98from isaaclab.utils.io import dump_yaml
99
100from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
101
102import isaaclab_tasks # noqa: F401
103from isaaclab_tasks.utils.hydra import hydra_task_config
104
105# import logger
106logger = logging.getLogger(__name__)
107# PLACEHOLDER: Extension template (do not remove this comment)
108
109
110@hydra_task_config(args_cli.task, args_cli.agent)
111def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
112 """Train with stable-baselines agent."""
113 # randomly sample a seed if seed = -1
114 if args_cli.seed == -1:
115 args_cli.seed = random.randint(0, 10000)
116
117 # override configurations with non-hydra CLI arguments
118 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
119 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
120 # max iterations for training
121 if args_cli.max_iterations is not None:
122 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
123
124 # set the environment seed
125 # note: certain randomizations occur in the environment initialization so we set the seed here
126 env_cfg.seed = agent_cfg["seed"]
127 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
128
129 # directory for logging into
130 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
131 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
132 print(f"[INFO] Logging experiment in directory: {log_root_path}")
133 # The Ray Tune workflow extracts experiment name using the logging line below, hence,
134 # do not change it (see PR #2346, comment-2819298849)
135 print(f"Exact experiment name requested from command line: {run_info}")
136 log_dir = os.path.join(log_root_path, run_info)
137 # dump the configuration into log-directory
138 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
139 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
140
141 # save command used to run the script
142 command = " ".join(sys.orig_argv)
143 (Path(log_dir) / "command.txt").write_text(command)
144
145 # post-process agent configuration
146 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
147 # read configurations about the agent-training
148 policy_arch = agent_cfg.pop("policy")
149 n_timesteps = agent_cfg.pop("n_timesteps")
150
151 # set the IO descriptors export flag if requested
152 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
153 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
154 else:
155 logger.warning(
156 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
157 )
158
159 # set the log directory for the environment (works for all environment types)
160 env_cfg.log_dir = log_dir
161
162 # create isaac environment
163 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
164
165 # convert to single-agent instance if required by the RL algorithm
166 if isinstance(env.unwrapped, DirectMARLEnv):
167 env = multi_agent_to_single_agent(env)
168
169 # wrap for video recording
170 if args_cli.video:
171 video_kwargs = {
172 "video_folder": os.path.join(log_dir, "videos", "train"),
173 "step_trigger": lambda step: step % args_cli.video_interval == 0,
174 "video_length": args_cli.video_length,
175 "disable_logger": True,
176 }
177 print("[INFO] Recording videos during training.")
178 print_dict(video_kwargs, nesting=4)
179 env = gym.wrappers.RecordVideo(env, **video_kwargs)
180
181 start_time = time.time()
182
183 # wrap around environment for stable baselines
184 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
185
186 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
187 norm_args = {}
188 for key in norm_keys:
189 if key in agent_cfg:
190 norm_args[key] = agent_cfg.pop(key)
191
192 if norm_args and norm_args.get("normalize_input"):
193 print(f"Normalizing input, {norm_args=}")
194 env = VecNormalize(
195 env,
196 training=True,
197 norm_obs=norm_args["normalize_input"],
198 norm_reward=norm_args.get("normalize_value", False),
199 clip_obs=norm_args.get("clip_obs", 100.0),
200 gamma=agent_cfg["gamma"],
201 clip_reward=np.inf,
202 )
203
204 # create agent from stable baselines
205 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
206 if args_cli.checkpoint is not None:
207 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
208
209 # callbacks for agent
210 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
211 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
212
213 # train the agent
214 with contextlib.suppress(KeyboardInterrupt):
215 agent.learn(
216 total_timesteps=n_timesteps,
217 callback=callbacks,
218 progress_bar=True,
219 log_interval=None,
220 )
221 # save the final model
222 agent.save(os.path.join(log_dir, "model"))
223 print("Saving to:")
224 print(os.path.join(log_dir, "model.zip"))
225
226 if isinstance(env, VecNormalize):
227 print("Saving normalization")
228 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
229
230 print(f"Training time: {round(time.time() - start_time, 2)} seconds")
231
232 # close the simulator
233 env.close()
234
235
236if __name__ == "__main__":
237 # run the main function
238 main()
239 # close sim app
240 simulation_app.close()
The Code Explained#
Most of the code above is boilerplate code to create logging directories, saving the parsed configurations, and setting up different Stable-Baselines3 components. For this tutorial, the important part is creating the environment and wrapping it with the Stable-Baselines3 wrapper.
There are three wrappers used in the code above:
gymnasium.wrappers.RecordVideo: This wrapper records a video of the environment and saves it to the specified directory. This is useful for visualizing the agent’s behavior during training.wrappers.sb3.Sb3VecEnvWrapper: This wrapper converts the environment into a Stable-Baselines3 compatible environment.stable_baselines3.common.vec_env.VecNormalize: This wrapper normalizes the environment’s observations and rewards.
Each of these wrappers wrap around the previous wrapper by following env = wrapper(env, *args, **kwargs)
repeatedly. The final environment is then used to train the agent. For more information on how these
wrappers work, please refer to the Wrapping environments documentation.
The Code Execution#
We train a PPO agent from Stable-Baselines3 to solve the cartpole balancing task.
Training the agent#
There are three main ways to train the agent. Each of them has their own advantages and disadvantages. It is up to you to decide which one you prefer based on your use case.
Headless execution#
If the --headless flag is set, the simulation is not rendered during training. This is useful
when training on a remote server or when you do not want to see the simulation. Typically, it speeds
up the training process since only physics simulation step is performed.
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless
Headless execution with off-screen render#
Since the above command does not render the simulation, it is not possible to visualize the agent’s
behavior during training. To visualize the agent’s behavior, we pass the --enable_cameras which
enables off-screen rendering. Additionally, we pass the flag --video which records a video of the
agent’s behavior during training.
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless --video
The videos are saved to the logs/sb3/Isaac-Cartpole-v0/<run-dir>/videos/train directory. You can open these videos
using any video player.
Interactive execution#
While the above two methods are useful for training the agent, they don’t allow you to interact with the
simulation to see what is happening. In this case, you can ignore the --headless flag and run the
training script as follows:
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64
This will open the Isaac Sim window and you can see the agent training in the environment. However, this
will slow down the training process since the simulation is rendered on the screen. As a workaround, you
can switch between different render modes in the "Isaac Lab" window that is docked on the bottom-right
corner of the screen. To learn more about these render modes, please check the
sim.SimulationContext.RenderMode class.
Viewing the logs#
On a separate terminal, you can monitor the training progress by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir logs/sb3/Isaac-Cartpole-v0
Playing the trained agent#
Once the training is complete, you can visualize the trained agent by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p scripts/reinforcement_learning/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --use_last_checkpoint
The above command will load the latest checkpoint from the logs/sb3/Isaac-Cartpole-v0
directory. You can also specify a specific checkpoint by passing the --checkpoint flag.