Using an operational space controller#

Sometimes, controlling the end-effector pose of the robot using a differential IK controller is not sufficient. For example, we might want to enforce a very specific pose tracking error dynamics in the task space, actuate the robot with joint effort/torque commands, or apply a contact force at a specific direction while controlling the motion of the other directions (e.g., washing the surface of the table with a cloth). In such tasks, we can use an operational space controller (OSC).

References for the operational space control:

  1. O Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1):43–53, 1987. URL http://dx.doi.org/10.1109/JRA.1987.1087068.

  2. Robot Dynamics Lecture Notes by Marco Hutter (ETH Zurich). URL https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf

In this tutorial, we will learn how to use an OSC to control the robot. We will use the controllers.OperationalSpaceController class to apply a constant force perpendicular to a tilted wall surface while tracking a desired end-effector pose in all the other directions.

The Code#

The tutorial corresponds to the run_osc.py script in the source/standalone/tutorials/05_controllers directory.

Code for run_osc.py
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6"""
  7This script demonstrates how to use the operational space controller (OSC) with the simulator.
  8
  9The OSC controller can be configured in different modes. It uses the dynamical quantities such as Jacobians and
 10mass matricescomputed by PhysX.
 11
 12.. code-block:: bash
 13
 14    # Usage
 15    ./isaaclab.sh -p source/standalone/tutorials/05_controllers/run_osc.py
 16
 17"""
 18
 19"""Launch Isaac Sim Simulator first."""
 20
 21import argparse
 22
 23from omni.isaac.lab.app import AppLauncher
 24
 25# add argparse arguments
 26parser = argparse.ArgumentParser(description="Tutorial on using the operational space controller.")
 27parser.add_argument("--num_envs", type=int, default=128, help="Number of environments to spawn.")
 28# append AppLauncher cli args
 29AppLauncher.add_app_launcher_args(parser)
 30# parse the arguments
 31args_cli = parser.parse_args()
 32
 33# launch omniverse app
 34app_launcher = AppLauncher(args_cli)
 35simulation_app = app_launcher.app
 36
 37"""Rest everything follows."""
 38
 39import torch
 40
 41import omni.isaac.lab.sim as sim_utils
 42from omni.isaac.lab.assets import Articulation, AssetBaseCfg
 43from omni.isaac.lab.controllers import OperationalSpaceController, OperationalSpaceControllerCfg
 44from omni.isaac.lab.markers import VisualizationMarkers
 45from omni.isaac.lab.markers.config import FRAME_MARKER_CFG
 46from omni.isaac.lab.scene import InteractiveScene, InteractiveSceneCfg
 47from omni.isaac.lab.sensors import ContactSensorCfg
 48from omni.isaac.lab.utils import configclass
 49from omni.isaac.lab.utils.math import (
 50    combine_frame_transforms,
 51    matrix_from_quat,
 52    quat_inv,
 53    quat_rotate_inverse,
 54    subtract_frame_transforms,
 55)
 56
 57##
 58# Pre-defined configs
 59##
 60from omni.isaac.lab_assets import FRANKA_PANDA_HIGH_PD_CFG  # isort:skip
 61
 62
 63@configclass
 64class SceneCfg(InteractiveSceneCfg):
 65    """Configuration for a simple scene with a tilted wall."""
 66
 67    # ground plane
 68    ground = AssetBaseCfg(
 69        prim_path="/World/defaultGroundPlane",
 70        spawn=sim_utils.GroundPlaneCfg(),
 71    )
 72
 73    # lights
 74    dome_light = AssetBaseCfg(
 75        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
 76    )
 77
 78    # Tilted wall
 79    tilted_wall = AssetBaseCfg(
 80        prim_path="{ENV_REGEX_NS}/TiltedWall",
 81        spawn=sim_utils.CuboidCfg(
 82            size=(2.0, 1.5, 0.01),
 83            collision_props=sim_utils.CollisionPropertiesCfg(),
 84            visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0), opacity=0.1),
 85            rigid_props=sim_utils.RigidBodyPropertiesCfg(kinematic_enabled=True),
 86            activate_contact_sensors=True,
 87        ),
 88        init_state=AssetBaseCfg.InitialStateCfg(
 89            pos=(0.6 + 0.085, 0.0, 0.3), rot=(0.9238795325, 0.0, -0.3826834324, 0.0)
 90        ),
 91    )
 92
 93    contact_forces = ContactSensorCfg(
 94        prim_path="/World/envs/env_.*/TiltedWall",
 95        update_period=0.0,
 96        history_length=2,
 97        debug_vis=False,
 98    )
 99
100    robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
101    robot.actuators["panda_shoulder"].stiffness = 0.0
102    robot.actuators["panda_shoulder"].damping = 0.0
103    robot.actuators["panda_forearm"].stiffness = 0.0
104    robot.actuators["panda_forearm"].damping = 0.0
105    robot.spawn.rigid_props.disable_gravity = True
106
107
108def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
109    """Runs the simulation loop.
110
111    Args:
112        sim: (SimulationContext) Simulation context.
113        scene: (InteractiveScene) Interactive scene.
114    """
115
116    # Extract scene entities for readability.
117    robot = scene["robot"]
118    contact_forces = scene["contact_forces"]
119
120    # Obtain indices for the end-effector and arm joints
121    ee_frame_name = "panda_leftfinger"
122    arm_joint_names = ["panda_joint.*"]
123    ee_frame_idx = robot.find_bodies(ee_frame_name)[0][0]
124    arm_joint_ids = robot.find_joints(arm_joint_names)[0]
125
126    # Create the OSC
127    osc_cfg = OperationalSpaceControllerCfg(
128        target_types=["pose_abs", "wrench_abs"],
129        impedance_mode="variable_kp",
130        inertial_dynamics_decoupling=True,
131        partial_inertial_dynamics_decoupling=False,
132        gravity_compensation=False,
133        motion_damping_ratio_task=1.0,
134        contact_wrench_stiffness_task=[0.0, 0.0, 0.1, 0.0, 0.0, 0.0],
135        motion_control_axes_task=[1, 1, 0, 1, 1, 1],
136        contact_wrench_control_axes_task=[0, 0, 1, 0, 0, 0],
137        nullspace_control="position",
138    )
139    osc = OperationalSpaceController(osc_cfg, num_envs=scene.num_envs, device=sim.device)
140
141    # Markers
142    frame_marker_cfg = FRAME_MARKER_CFG.copy()
143    frame_marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1)
144    ee_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_current"))
145    goal_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_goal"))
146
147    # Define targets for the arm
148    ee_goal_pose_set_tilted_b = torch.tensor(
149        [
150            [0.6, 0.15, 0.3, 0.0, 0.92387953, 0.0, 0.38268343],
151            [0.6, -0.3, 0.3, 0.0, 0.92387953, 0.0, 0.38268343],
152            [0.8, 0.0, 0.5, 0.0, 0.92387953, 0.0, 0.38268343],
153        ],
154        device=sim.device,
155    )
156    ee_goal_wrench_set_tilted_task = torch.tensor(
157        [
158            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
159            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
160            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
161        ],
162        device=sim.device,
163    )
164    kp_set_task = torch.tensor(
165        [
166            [360.0, 360.0, 360.0, 360.0, 360.0, 360.0],
167            [420.0, 420.0, 420.0, 420.0, 420.0, 420.0],
168            [320.0, 320.0, 320.0, 320.0, 320.0, 320.0],
169        ],
170        device=sim.device,
171    )
172    ee_target_set = torch.cat([ee_goal_pose_set_tilted_b, ee_goal_wrench_set_tilted_task, kp_set_task], dim=-1)
173
174    # Define simulation stepping
175    sim_dt = sim.get_physics_dt()
176
177    # Update existing buffers
178    # Note: We need to update buffers before the first step for the controller.
179    robot.update(dt=sim_dt)
180
181    # Get the center of the robot soft joint limits
182    joint_centers = torch.mean(robot.data.soft_joint_pos_limits[:, arm_joint_ids, :], dim=-1)
183
184    # get the updated states
185    (
186        jacobian_b,
187        mass_matrix,
188        gravity,
189        ee_pose_b,
190        ee_vel_b,
191        root_pose_w,
192        ee_pose_w,
193        ee_force_b,
194        joint_pos,
195        joint_vel,
196    ) = update_states(sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces)
197
198    # Track the given target command
199    current_goal_idx = 0  # Current goal index for the arm
200    command = torch.zeros(
201        scene.num_envs, osc.action_dim, device=sim.device
202    )  # Generic target command, which can be pose, position, force, etc.
203    ee_target_pose_b = torch.zeros(scene.num_envs, 7, device=sim.device)  # Target pose in the body frame
204    ee_target_pose_w = torch.zeros(scene.num_envs, 7, device=sim.device)  # Target pose in the world frame (for marker)
205
206    # Set joint efforts to zero
207    zero_joint_efforts = torch.zeros(scene.num_envs, robot.num_joints, device=sim.device)
208    joint_efforts = torch.zeros(scene.num_envs, len(arm_joint_ids), device=sim.device)
209
210    count = 0
211    # Simulation loop
212    while simulation_app.is_running():
213        # reset every 500 steps
214        if count % 500 == 0:
215            # reset joint state to default
216            default_joint_pos = robot.data.default_joint_pos.clone()
217            default_joint_vel = robot.data.default_joint_vel.clone()
218            robot.write_joint_state_to_sim(default_joint_pos, default_joint_vel)
219            robot.set_joint_effort_target(zero_joint_efforts)  # Set zero torques in the initial step
220            robot.write_data_to_sim()
221            robot.reset()
222            # reset contact sensor
223            contact_forces.reset()
224            # reset target pose
225            robot.update(sim_dt)
226            _, _, _, ee_pose_b, _, _, _, _, _, _ = update_states(
227                sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces
228            )  # at reset, the jacobians are not updated to the latest state
229            command, ee_target_pose_b, ee_target_pose_w, current_goal_idx = update_target(
230                sim, scene, osc, root_pose_w, ee_target_set, current_goal_idx
231            )
232            # set the osc command
233            osc.reset()
234            command, task_frame_pose_b = convert_to_task_frame(osc, command=command, ee_target_pose_b=ee_target_pose_b)
235            osc.set_command(command=command, current_ee_pose_b=ee_pose_b, current_task_frame_pose_b=task_frame_pose_b)
236        else:
237            # get the updated states
238            (
239                jacobian_b,
240                mass_matrix,
241                gravity,
242                ee_pose_b,
243                ee_vel_b,
244                root_pose_w,
245                ee_pose_w,
246                ee_force_b,
247                joint_pos,
248                joint_vel,
249            ) = update_states(sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces)
250            # compute the joint commands
251            joint_efforts = osc.compute(
252                jacobian_b=jacobian_b,
253                current_ee_pose_b=ee_pose_b,
254                current_ee_vel_b=ee_vel_b,
255                current_ee_force_b=ee_force_b,
256                mass_matrix=mass_matrix,
257                gravity=gravity,
258                current_joint_pos=joint_pos,
259                current_joint_vel=joint_vel,
260                nullspace_joint_pos_target=joint_centers,
261            )
262            # apply actions
263            robot.set_joint_effort_target(joint_efforts, joint_ids=arm_joint_ids)
264            robot.write_data_to_sim()
265
266        # update marker positions
267        ee_marker.visualize(ee_pose_w[:, 0:3], ee_pose_w[:, 3:7])
268        goal_marker.visualize(ee_target_pose_w[:, 0:3], ee_target_pose_w[:, 3:7])
269
270        # perform step
271        sim.step(render=True)
272        # update robot buffers
273        robot.update(sim_dt)
274        # update buffers
275        scene.update(sim_dt)
276        # update sim-time
277        count += 1
278
279
280# Update robot states
281def update_states(
282    sim: sim_utils.SimulationContext,
283    scene: InteractiveScene,
284    robot: Articulation,
285    ee_frame_idx: int,
286    arm_joint_ids: list[int],
287    contact_forces,
288):
289    """Update the robot states.
290
291    Args:
292        sim: (SimulationContext) Simulation context.
293        scene: (InteractiveScene) Interactive scene.
294        robot: (Articulation) Robot articulation.
295        ee_frame_idx: (int) End-effector frame index.
296        arm_joint_ids: (list[int]) Arm joint indices.
297        contact_forces: (ContactSensor) Contact sensor.
298
299    Returns:
300        jacobian_b (torch.tensor): Jacobian in the body frame.
301        mass_matrix (torch.tensor): Mass matrix.
302        gravity (torch.tensor): Gravity vector.
303        ee_pose_b (torch.tensor): End-effector pose in the body frame.
304        ee_vel_b (torch.tensor): End-effector velocity in the body frame.
305        root_pose_w (torch.tensor): Root pose in the world frame.
306        ee_pose_w (torch.tensor): End-effector pose in the world frame.
307        ee_force_b (torch.tensor): End-effector force in the body frame.
308        joint_pos (torch.tensor): The joint positions.
309        joint_vel (torch.tensor): The joint velocities.
310
311    Raises:
312        ValueError: Undefined target_type.
313    """
314    # obtain dynamics related quantities from simulation
315    ee_jacobi_idx = ee_frame_idx - 1
316    jacobian_w = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, arm_joint_ids]
317    mass_matrix = robot.root_physx_view.get_mass_matrices()[:, arm_joint_ids, :][:, :, arm_joint_ids]
318    gravity = robot.root_physx_view.get_generalized_gravity_forces()[:, arm_joint_ids]
319    # Convert the Jacobian from world to root frame
320    jacobian_b = jacobian_w.clone()
321    root_rot_matrix = matrix_from_quat(quat_inv(robot.data.root_quat_w))
322    jacobian_b[:, :3, :] = torch.bmm(root_rot_matrix, jacobian_b[:, :3, :])
323    jacobian_b[:, 3:, :] = torch.bmm(root_rot_matrix, jacobian_b[:, 3:, :])
324
325    # Compute current pose of the end-effector
326    root_pos_w = robot.data.root_pos_w
327    root_quat_w = robot.data.root_quat_w
328    ee_pos_w = robot.data.body_pos_w[:, ee_frame_idx]
329    ee_quat_w = robot.data.body_quat_w[:, ee_frame_idx]
330    ee_pos_b, ee_quat_b = subtract_frame_transforms(root_pos_w, root_quat_w, ee_pos_w, ee_quat_w)
331    root_pose_w = torch.cat([root_pos_w, root_quat_w], dim=-1)
332    ee_pose_w = torch.cat([ee_pos_w, ee_quat_w], dim=-1)
333    ee_pose_b = torch.cat([ee_pos_b, ee_quat_b], dim=-1)
334
335    # Compute the current velocity of the end-effector
336    ee_vel_w = robot.data.body_vel_w[:, ee_frame_idx, :]  # Extract end-effector velocity in the world frame
337    root_vel_w = robot.data.root_vel_w  # Extract root velocity in the world frame
338    relative_vel_w = ee_vel_w - root_vel_w  # Compute the relative velocity in the world frame
339    ee_lin_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 0:3])  # From world to root frame
340    ee_ang_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 3:6])
341    ee_vel_b = torch.cat([ee_lin_vel_b, ee_ang_vel_b], dim=-1)
342
343    # Calculate the contact force
344    ee_force_w = torch.zeros(scene.num_envs, 3, device=sim.device)
345    sim_dt = sim.get_physics_dt()
346    contact_forces.update(sim_dt)  # update contact sensor
347    # Calculate the contact force by averaging over last four time steps (i.e., to smoothen) and
348    # taking the max of three surfaces as only one should be the contact of interest
349    ee_force_w, _ = torch.max(torch.mean(contact_forces.data.net_forces_w_history, dim=1), dim=1)
350
351    # This is a simplification, only for the sake of testing.
352    ee_force_b = ee_force_w
353
354    # Get joint positions and velocities
355    joint_pos = robot.data.joint_pos[:, arm_joint_ids]
356    joint_vel = robot.data.joint_vel[:, arm_joint_ids]
357
358    return (
359        jacobian_b,
360        mass_matrix,
361        gravity,
362        ee_pose_b,
363        ee_vel_b,
364        root_pose_w,
365        ee_pose_w,
366        ee_force_b,
367        joint_pos,
368        joint_vel,
369    )
370
371
372# Update the target commands
373def update_target(
374    sim: sim_utils.SimulationContext,
375    scene: InteractiveScene,
376    osc: OperationalSpaceController,
377    root_pose_w: torch.tensor,
378    ee_target_set: torch.tensor,
379    current_goal_idx: int,
380):
381    """Update the targets for the operational space controller.
382
383    Args:
384        sim: (SimulationContext) Simulation context.
385        scene: (InteractiveScene) Interactive scene.
386        osc: (OperationalSpaceController) Operational space controller.
387        root_pose_w: (torch.tensor) Root pose in the world frame.
388        ee_target_set: (torch.tensor) End-effector target set.
389        current_goal_idx: (int) Current goal index.
390
391    Returns:
392        command (torch.tensor): Updated target command.
393        ee_target_pose_b (torch.tensor): Updated target pose in the body frame.
394        ee_target_pose_w (torch.tensor): Updated target pose in the world frame.
395        next_goal_idx (int): Next goal index.
396
397    Raises:
398        ValueError: Undefined target_type.
399    """
400
401    # update the ee desired command
402    command = torch.zeros(scene.num_envs, osc.action_dim, device=sim.device)
403    command[:] = ee_target_set[current_goal_idx]
404
405    # update the ee desired pose
406    ee_target_pose_b = torch.zeros(scene.num_envs, 7, device=sim.device)
407    for target_type in osc.cfg.target_types:
408        if target_type == "pose_abs":
409            ee_target_pose_b[:] = command[:, :7]
410        elif target_type == "wrench_abs":
411            pass  # ee_target_pose_b could stay at the root frame for force control, what matters is ee_target_b
412        else:
413            raise ValueError("Undefined target_type within update_target().")
414
415    # update the target desired pose in world frame (for marker)
416    ee_target_pos_w, ee_target_quat_w = combine_frame_transforms(
417        root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_target_pose_b[:, 0:3], ee_target_pose_b[:, 3:7]
418    )
419    ee_target_pose_w = torch.cat([ee_target_pos_w, ee_target_quat_w], dim=-1)
420
421    next_goal_idx = (current_goal_idx + 1) % len(ee_target_set)
422
423    return command, ee_target_pose_b, ee_target_pose_w, next_goal_idx
424
425
426# Convert the target commands to the task frame
427def convert_to_task_frame(osc: OperationalSpaceController, command: torch.tensor, ee_target_pose_b: torch.tensor):
428    """Converts the target commands to the task frame.
429
430    Args:
431        osc: OperationalSpaceController object.
432        command: Command to be converted.
433        ee_target_pose_b: Target pose in the body frame.
434
435    Returns:
436        command (torch.tensor): Target command in the task frame.
437        task_frame_pose_b (torch.tensor): Target pose in the task frame.
438
439    Raises:
440        ValueError: Undefined target_type.
441    """
442    command = command.clone()
443    task_frame_pose_b = ee_target_pose_b.clone()
444
445    cmd_idx = 0
446    for target_type in osc.cfg.target_types:
447        if target_type == "pose_abs":
448            command[:, :3], command[:, 3:7] = subtract_frame_transforms(
449                task_frame_pose_b[:, :3], task_frame_pose_b[:, 3:], command[:, :3], command[:, 3:7]
450            )
451            cmd_idx += 7
452        elif target_type == "wrench_abs":
453            # These are already defined in target frame for ee_goal_wrench_set_tilted_task (since it is
454            # easier), so not transforming
455            cmd_idx += 6
456        else:
457            raise ValueError("Undefined target_type within _convert_to_task_frame().")
458
459    return command, task_frame_pose_b
460
461
462def main():
463    """Main function."""
464    # Load kit helper
465    sim_cfg = sim_utils.SimulationCfg(dt=0.01, device=args_cli.device)
466    sim = sim_utils.SimulationContext(sim_cfg)
467    # Set main camera
468    sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0])
469    # Design scene
470    scene_cfg = SceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
471    scene = InteractiveScene(scene_cfg)
472    # Play the simulator
473    sim.reset()
474    # Now we are ready!
475    print("[INFO]: Setup complete...")
476    # Run the simulator
477    run_simulator(sim, scene)
478
479
480if __name__ == "__main__":
481    # run the main function
482    main()
483    # close sim app
484    simulation_app.close()

Creating an Operational Space Controller#

The OperationalSpaceController class computes the joint efforts/torques for a robot to do simultaneous motion and force control in task space.

The reference frame of this task space could be an arbitrary coordinate frame in Euclidean space. By default, it is the robot’s base frame. However, in certain cases, it could be easier to define target coordinates w.r.t. a different frame. In such cases, the pose of this task reference frame, w.r.t. to the robot’s base frame, should be provided in the set_command method’s current_task_frame_pose_b argument. For example, in this tutorial, it makes sense to define the target commands w.r.t. a frame that is parallel to the wall surface, as the force control direction would be then only nonzero in the z-axis of this frame. The target pose, which is set to have the same orientation as the wall surface, is such a candidate and is used as the task frame in this tutorial. Therefore, all the arguments to the OperationalSpaceControllerCfg should be set with this task reference frame in mind.

For the motion control, the task space targets could be given as absolute (i.e., defined w.r.t. the robot base, target_types: "pose_abs") or relative the the end-effector’s current pose (i.e., target_types: "pose_rel"). For the force control, the task space targets could be given as absolute (i.e., defined w.r.t. the robot base, target_types: "force_abs"). If it is desired to apply pose and force control simultaneously, the target_types should be a list such as ["pose_abs", "wrench_abs"] or ["pose_rel", "wrench_abs"].

The axes that the motion and force control will be applied can be specified using the motion_control_axes_task and force_control_axes_task arguments, respectively. These lists should consist of 0/1 for all six axes (position and rotation) and be complementary to each other (e.g., for the x-axis, if the motion_control_axes_task is 0, the force_control_axes_task should be 1).

For the motion control axes, desired stiffness, and damping ratio values can be specified using the motion_control_stiffness and motion_damping_ratio_task arguments, which can be a scalar (same value for all axes) or a list of six scalars, one value corresponding to each axis. If desired, the stiffness and damping ratio values could be a command parameter (e.g., to learn the values using RL or change them on the go). For this, impedance_mode should be either "variable_kp" to include the stiffness values within the command or "variable" to include both the stiffness and damping ratio values. In these cases, motion_stiffness_limits_task and motion_damping_limits_task should be set as well, which puts bounds on the stiffness and damping ratio values.

For contact force control, it is possible to apply an open-loop force control by not setting the contact_wrench_stiffness_task, or apply a closed-loop force control (with the feed-forward term) by setting the desired stiffness values using the contact_wrench_stiffness_task argument, which can be a scalar or a list of six scalars. Please note that, currently, only the linear part of the contact wrench (hence the first three elements of the contact_wrench_stiffness_task) is considered in the closed-loop control, as the rotational part cannot be measured with the contact sensors.

For the motion control, inertial_dynamics_decoupling should be set to True to use the robot’s inertia matrix to decouple the desired accelerations in the task space. This is important for the motion control to be accurate, especially for rapid movements. This inertial decoupling accounts for the coupling between all the six motion axes. If desired, the inertial coupling between the translational and rotational axes could be ignored by setting the partial_inertial_dynamics_decoupling to True.

If it is desired to include the gravity compensation in the operational space command, the gravity_compensation should be set to True.

A final consideration regarding the operational space control is what to do with the null-space of redundant robots. The null-space is the subspace of the joint space that does not affect the task space coordinates. If nothing is done to control the null-space, the robot joints will float without moving the end-effector. This might be undesired (e.g., the robot joints might get close to their limits), and one might want to control the robot behaviour within its null-space. One way to do is to set nullspace_control to "position" (by default it is "none") which integrates a null-space PD controller to attract the robot joints to desired targets without affecting the task space. The behaviour of this null-space controller can be defined using the nullspace_stiffness and nullspace_damping_ratio arguments. Please note that theoretical decoupling of the null-space and task space accelerations is only possible when inertial_dynamics_decoupling is set to True and partial_inertial_dynamics_decoupling is set to False.

The included OSC implementation performs the computation in a batched format and uses PyTorch operations.

In this tutorial, we will use "pose_abs" for controlling the motion in all axes except the z-axis and "wrench_abs" for controlling the force in the z-axis. Moreover, we will include the full inertia decoupling in the motion control and not include the gravity compensation, as the gravity is disabled from the robot configuration. We set the impedance mode to "variable_kp" to dynamically change the stiffness values (motion_damping_ratio_task is set to 1: the kd values adapt according to kp values to maintain a critically damped response). Finally, nullspace_control is set to use "position" where the joint set points are provided to be the center of the joint position limits.

    # Create the OSC
    osc_cfg = OperationalSpaceControllerCfg(
        target_types=["pose_abs", "wrench_abs"],
        impedance_mode="variable_kp",
        inertial_dynamics_decoupling=True,
        partial_inertial_dynamics_decoupling=False,
        gravity_compensation=False,
        motion_damping_ratio_task=1.0,
        contact_wrench_stiffness_task=[0.0, 0.0, 0.1, 0.0, 0.0, 0.0],
        motion_control_axes_task=[1, 1, 0, 1, 1, 1],
        contact_wrench_control_axes_task=[0, 0, 1, 0, 0, 0],
        nullspace_control="position",
    )
    osc = OperationalSpaceController(osc_cfg, num_envs=scene.num_envs, device=sim.device)

Updating the states of the robot#

The OSC implementation is a computation-only class. Thus, it expects the user to provide the necessary information about the robot. This includes the robot’s Jacobian matrix, mass/inertia matrix, end-effector pose, velocity, contact force (all in the root frame), and finally, the joint positions and velocities. Moreover, the user should provide gravity compensation vector and null-space joint position targets if required.

# Update robot states
def update_states(
    sim: sim_utils.SimulationContext,
    scene: InteractiveScene,
    robot: Articulation,
    ee_frame_idx: int,
    arm_joint_ids: list[int],
    contact_forces,
):
    """Update the robot states.

    Args:
        sim: (SimulationContext) Simulation context.
        scene: (InteractiveScene) Interactive scene.
        robot: (Articulation) Robot articulation.
        ee_frame_idx: (int) End-effector frame index.
        arm_joint_ids: (list[int]) Arm joint indices.
        contact_forces: (ContactSensor) Contact sensor.

    Returns:
        jacobian_b (torch.tensor): Jacobian in the body frame.
        mass_matrix (torch.tensor): Mass matrix.
        gravity (torch.tensor): Gravity vector.
        ee_pose_b (torch.tensor): End-effector pose in the body frame.
        ee_vel_b (torch.tensor): End-effector velocity in the body frame.
        root_pose_w (torch.tensor): Root pose in the world frame.
        ee_pose_w (torch.tensor): End-effector pose in the world frame.
        ee_force_b (torch.tensor): End-effector force in the body frame.
        joint_pos (torch.tensor): The joint positions.
        joint_vel (torch.tensor): The joint velocities.

    Raises:
        ValueError: Undefined target_type.
    """
    # obtain dynamics related quantities from simulation
    ee_jacobi_idx = ee_frame_idx - 1
    jacobian_w = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, arm_joint_ids]
    mass_matrix = robot.root_physx_view.get_mass_matrices()[:, arm_joint_ids, :][:, :, arm_joint_ids]
    gravity = robot.root_physx_view.get_generalized_gravity_forces()[:, arm_joint_ids]
    # Convert the Jacobian from world to root frame
    jacobian_b = jacobian_w.clone()
    root_rot_matrix = matrix_from_quat(quat_inv(robot.data.root_quat_w))
    jacobian_b[:, :3, :] = torch.bmm(root_rot_matrix, jacobian_b[:, :3, :])
    jacobian_b[:, 3:, :] = torch.bmm(root_rot_matrix, jacobian_b[:, 3:, :])

    # Compute current pose of the end-effector
    root_pos_w = robot.data.root_pos_w
    root_quat_w = robot.data.root_quat_w
    ee_pos_w = robot.data.body_pos_w[:, ee_frame_idx]
    ee_quat_w = robot.data.body_quat_w[:, ee_frame_idx]
    ee_pos_b, ee_quat_b = subtract_frame_transforms(root_pos_w, root_quat_w, ee_pos_w, ee_quat_w)
    root_pose_w = torch.cat([root_pos_w, root_quat_w], dim=-1)
    ee_pose_w = torch.cat([ee_pos_w, ee_quat_w], dim=-1)
    ee_pose_b = torch.cat([ee_pos_b, ee_quat_b], dim=-1)

    # Compute the current velocity of the end-effector
    ee_vel_w = robot.data.body_vel_w[:, ee_frame_idx, :]  # Extract end-effector velocity in the world frame
    root_vel_w = robot.data.root_vel_w  # Extract root velocity in the world frame
    relative_vel_w = ee_vel_w - root_vel_w  # Compute the relative velocity in the world frame
    ee_lin_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 0:3])  # From world to root frame
    ee_ang_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 3:6])
    ee_vel_b = torch.cat([ee_lin_vel_b, ee_ang_vel_b], dim=-1)

    # Calculate the contact force
    ee_force_w = torch.zeros(scene.num_envs, 3, device=sim.device)
    sim_dt = sim.get_physics_dt()
    contact_forces.update(sim_dt)  # update contact sensor
    # Calculate the contact force by averaging over last four time steps (i.e., to smoothen) and
    # taking the max of three surfaces as only one should be the contact of interest
    ee_force_w, _ = torch.max(torch.mean(contact_forces.data.net_forces_w_history, dim=1), dim=1)

    # This is a simplification, only for the sake of testing.
    ee_force_b = ee_force_w

    # Get joint positions and velocities
    joint_pos = robot.data.joint_pos[:, arm_joint_ids]
    joint_vel = robot.data.joint_vel[:, arm_joint_ids]

    return (
        jacobian_b,
        mass_matrix,
        gravity,
        ee_pose_b,
        ee_vel_b,
        root_pose_w,
        ee_pose_w,
        ee_force_b,
        joint_pos,
        joint_vel,
    )


Computing robot command#

The OSC separates the operation of setting the desired command and computing the desired joint positions. To set the desired command, the user should provide command vector, which includes the target commands (i.e., in the order they appear in the target_types argument of the OSC configuration), and the desired stiffness and damping ratio values if the impedance_mode is set to "variable_kp" or "variable". They should be all in the same coordinate frame as the task frame (e.g., indicated with _task subscript) and concatanated together.

In this tutorial, the desired wrench is already defined w.r.t. the task frame, and the desired pose is transformed to the task frame as the following:

# Convert the target commands to the task frame
def convert_to_task_frame(osc: OperationalSpaceController, command: torch.tensor, ee_target_pose_b: torch.tensor):
    """Converts the target commands to the task frame.

    Args:
        osc: OperationalSpaceController object.
        command: Command to be converted.
        ee_target_pose_b: Target pose in the body frame.

    Returns:
        command (torch.tensor): Target command in the task frame.
        task_frame_pose_b (torch.tensor): Target pose in the task frame.

    Raises:
        ValueError: Undefined target_type.
    """
    command = command.clone()
    task_frame_pose_b = ee_target_pose_b.clone()

    cmd_idx = 0
    for target_type in osc.cfg.target_types:
        if target_type == "pose_abs":
            command[:, :3], command[:, 3:7] = subtract_frame_transforms(
                task_frame_pose_b[:, :3], task_frame_pose_b[:, 3:], command[:, :3], command[:, 3:7]
            )
            cmd_idx += 7
        elif target_type == "wrench_abs":
            # These are already defined in target frame for ee_goal_wrench_set_tilted_task (since it is
            # easier), so not transforming
            cmd_idx += 6
        else:
            raise ValueError("Undefined target_type within _convert_to_task_frame().")

    return command, task_frame_pose_b

The OSC command is set with the command vector in the task frame, the end-effector pose in the base frame, and the task (reference) frame pose in the base frame as the following. This information is needed, as the internal computations are done in the base frame.

            # set the osc command
            osc.reset()
            command, task_frame_pose_b = convert_to_task_frame(osc, command=command, ee_target_pose_b=ee_target_pose_b)
            osc.set_command(command=command, current_ee_pose_b=ee_pose_b, current_task_frame_pose_b=task_frame_pose_b)

The joint effort/torque values are computed using the provided robot states and the desired command as the following:

            # compute the joint commands
            joint_efforts = osc.compute(
                jacobian_b=jacobian_b,
                current_ee_pose_b=ee_pose_b,
                current_ee_vel_b=ee_vel_b,
                current_ee_force_b=ee_force_b,
                mass_matrix=mass_matrix,
                gravity=gravity,
                current_joint_pos=joint_pos,
                current_joint_vel=joint_vel,
                nullspace_joint_pos_target=joint_centers,
            )

The computed joint effort/torque targets can then be applied on the robot.

            # apply actions
            robot.set_joint_effort_target(joint_efforts, joint_ids=arm_joint_ids)
            robot.write_data_to_sim()

The Code Execution#

You can now run the script and see the result:

./isaaclab.sh -p source/standalone/tutorials/05_controllers/run_osc.py --num_envs 128

The script will start a simulation with 128 robots. The robots will be controlled using the OSC. The current and desired end-effector poses should be displayed using frame markers in addition to the red tilted wall. You should see that the robot reaches the desired pose while applying a constant force perpendicular to the wall surface.

result of run_osc.py

To stop the simulation, you can either close the window or press Ctrl+C in the terminal.