Source code for omni.isaac.lab.utils.modifiers.modifier_base
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
from __future__ import annotations
import torch
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .modifier_cfg import ModifierCfg
[docs]class ModifierBase(ABC):
"""Base class for modifiers implemented as classes.
Modifiers implementations can be functions or classes. If a modifier is a class, it should
inherit from this class and implement the required methods.
A class implementation of a modifier can be used to store state information between calls.
This is useful for modifiers that require stateful operations, such as rolling averages
or delays or decaying filters.
Example pseudo-code to create and use the class:
.. code-block:: python
from omni.isaac.lab.utils import modifiers
# define custom keyword arguments to pass to ModifierCfg
kwarg_dict = {"arg_1" : VAL_1, "arg_2" : VAL_2}
# create modifier configuration object
# func is the class name of the modifier and params is the dictionary of arguments
modifier_config = modifiers.ModifierCfg(func=modifiers.ModifierBase, params=kwarg_dict)
# define modifier instance
my_modifier = modifiers.ModifierBase(cfg=modifier_config)
"""
def __init__(self, cfg: ModifierCfg, data_dim: tuple[int, ...], device: str) -> None:
"""Initializes the modifier class.
Args:
cfg: Configuration parameters.
data_dim: The dimensions of the data to be modified. First element is the batch size
which usually corresponds to number of environments in the simulation.
device: The device to run the modifier on.
"""
self._cfg = cfg
self._data_dim = data_dim
self._device = device
[docs] @abstractmethod
def reset(self, env_ids: Sequence[int] | None = None):
"""Resets the Modifier.
Args:
env_ids: The environment ids. Defaults to None, in which case
all environments are considered.
"""
raise NotImplementedError
[docs] @abstractmethod
def __call__(self, data: torch.Tensor) -> torch.Tensor:
"""Abstract method for defining the modification function.
Args:
data: The data to be modified. Shape should match the data_dim passed during initialization.
Returns:
Modified data. Shape is the same as the input data.
"""
raise NotImplementedError