Source code for omni.isaac.lab.utils.dict

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""Sub-module for utilities for working with dictionaries."""

import collections.abc
import hashlib
import json
import torch
from collections.abc import Iterable, Mapping
from typing import Any

from .array import TENSOR_TYPE_CONVERSIONS, TENSOR_TYPES
from .string import callable_to_string, string_to_callable, string_to_slice

"""
Dictionary <-> Class operations.
"""


[docs]def class_to_dict(obj: object) -> dict[str, Any]: """Convert an object into dictionary recursively. Note: Ignores all names starting with "__" (i.e. built-in methods). Args: obj: An instance of a class to convert. Raises: ValueError: When input argument is not an object. Returns: Converted dictionary mapping. """ # check that input data is class instance if not hasattr(obj, "__class__"): raise ValueError(f"Expected a class instance. Received: {type(obj)}.") # convert object to dictionary if isinstance(obj, dict): obj_dict = obj elif isinstance(obj, torch.Tensor): # We have to treat torch tensors specially because `torch.tensor.__dict__` returns an empty # dict, which would mean that a torch.tensor would be stored as an empty dict. Instead we # want to store it directly as the tensor. return obj elif hasattr(obj, "__dict__"): obj_dict = obj.__dict__ else: return obj # convert to dictionary data = dict() for key, value in obj_dict.items(): # disregard builtin attributes if key.startswith("__"): continue # check if attribute is callable -- function if callable(value): data[key] = callable_to_string(value) # check if attribute is a dictionary elif hasattr(value, "__dict__") or isinstance(value, dict): data[key] = class_to_dict(value) # check if attribute is a list or tuple elif isinstance(value, (list, tuple)): data[key] = type(value)([class_to_dict(v) for v in value]) else: data[key] = value return data
[docs]def update_class_from_dict(obj, data: dict[str, Any], _ns: str = "") -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: obj: An instance of a class to update. data: Input dictionary to update from. _ns: Namespace of the current object. This is useful for nested configuration classes or dictionaries. Defaults to "". Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ for key, value in data.items(): # key_ns is the full namespace of the key key_ns = _ns + "/" + key # check if key is present in the object if hasattr(obj, key) or isinstance(obj, dict): obj_mem = obj[key] if isinstance(obj, dict) else getattr(obj, key) if isinstance(value, Mapping): # recursively call if it is a dictionary update_class_from_dict(obj_mem, value, _ns=key_ns) continue if isinstance(value, Iterable) and not isinstance(value, str): # check length of value to be safe if len(obj_mem) != len(value) and obj_mem is not None: raise ValueError( f"[Config]: Incorrect length under namespace: {key_ns}." f" Expected: {len(obj_mem)}, Received: {len(value)}." ) if isinstance(obj_mem, tuple): value = tuple(value) else: set_obj = True # recursively call if iterable contains dictionaries for i in range(len(obj_mem)): if isinstance(value[i], dict): update_class_from_dict(obj_mem[i], value[i], _ns=key_ns) set_obj = False # do not set value to obj, otherwise it overwrites the cfg class with the dict if not set_obj: continue elif callable(obj_mem): # update function name value = string_to_callable(value) elif isinstance(value, type(obj_mem)) or value is None: pass else: raise ValueError( f"[Config]: Incorrect type under namespace: {key_ns}." f" Expected: {type(obj_mem)}, Received: {type(value)}." ) # set value if isinstance(obj, dict): obj[key] = value else: setattr(obj, key, value) else: raise KeyError(f"[Config]: Key not found under namespace: {key_ns}.")
""" Dictionary <-> Hashable operations. """
[docs]def dict_to_md5_hash(data: object) -> str: """Convert a dictionary into a hashable key using MD5 hash. Args: data: Input dictionary or configuration object to convert. Returns: A string object of double length containing only hexadecimal digits. """ # convert to dictionary if isinstance(data, dict): encoded_buffer = json.dumps(data, sort_keys=True).encode() else: encoded_buffer = json.dumps(class_to_dict(data), sort_keys=True).encode() # compute hash using MD5 data_hash = hashlib.md5() data_hash.update(encoded_buffer) # return the hash key return data_hash.hexdigest()
""" Dictionary operations. """
[docs]def convert_dict_to_backend( data: dict, backend: str = "numpy", array_types: Iterable[str] = ("numpy", "torch", "warp") ) -> dict: """Convert all arrays or tensors in a dictionary to a given backend. This function iterates over the dictionary, converts all arrays or tensors with the given types to the desired backend, and stores them in a new dictionary. It also works with nested dictionaries. Currently supported backends are "numpy", "torch", and "warp". Note: This function only converts arrays or tensors. Other types of data are left unchanged. Mutable types (e.g. lists) are referenced by the new dictionary, so they are not copied. Args: data: An input dict containing array or tensor data as values. backend: The backend ("numpy", "torch", "warp") to which arrays in this dict should be converted. Defaults to "numpy". array_types: A list containing the types of arrays that should be converted to the desired backend. Defaults to ("numpy", "torch", "warp"). Raises: ValueError: If the specified ``backend`` or ``array_types`` are unknown, i.e. not in the list of supported backends ("numpy", "torch", "warp"). Returns: The updated dict with the data converted to the desired backend. """ # THINK: Should we also support converting to a specific device, e.g. "cuda:0"? # Check the backend is valid. if backend not in TENSOR_TYPE_CONVERSIONS: raise ValueError(f"Unknown backend '{backend}'. Supported backends are 'numpy', 'torch', and 'warp'.") # Define the conversion functions for each backend. tensor_type_conversions = TENSOR_TYPE_CONVERSIONS[backend] # Parse the array types and convert them to the corresponding types: "numpy" -> np.ndarray, etc. parsed_types = list() for t in array_types: # Check type is valid. if t not in TENSOR_TYPES: raise ValueError(f"Unknown array type: '{t}'. Supported array types are 'numpy', 'torch', and 'warp'.") # Exclude types that match the backend, since we do not need to convert these. if t == backend: continue # Convert the string types to the corresponding types. parsed_types.append(TENSOR_TYPES[t]) # Convert the data to the desired backend. output_dict = dict() for key, value in data.items(): # Obtain the data type of the current value. data_type = type(value) # -- arrays if data_type in parsed_types: # check if we have a known conversion. if data_type not in tensor_type_conversions: raise ValueError(f"No registered conversion for data type: {data_type} to {backend}!") # convert the data to the desired backend. output_dict[key] = tensor_type_conversions[data_type](value) # -- nested dictionaries elif isinstance(data[key], dict): output_dict[key] = convert_dict_to_backend(value) # -- everything else else: output_dict[key] = value return output_dict
[docs]def update_dict(orig_dict: dict, new_dict: collections.abc.Mapping) -> dict: """Updates existing dictionary with values from a new dictionary. This function mimics the dict.update() function. However, it works for nested dictionaries as well. Args: orig_dict: The original dictionary to insert items to. new_dict: The new dictionary to insert items from. Returns: The updated dictionary. """ for keyname, value in new_dict.items(): if isinstance(value, collections.abc.Mapping): orig_dict[keyname] = update_dict(orig_dict.get(keyname, {}), value) else: orig_dict[keyname] = value return orig_dict
[docs]def replace_slices_with_strings(data: dict) -> dict: """Replace slice objects with their string representations in a dictionary. Args: data: The dictionary to process. Returns: The dictionary with slice objects replaced by their string representations. """ if isinstance(data, dict): return {k: replace_slices_with_strings(v) for k, v in data.items()} elif isinstance(data, slice): return f"slice({data.start},{data.stop},{data.step})" else: return data
[docs]def replace_strings_with_slices(data: dict) -> dict: """Replace string representations of slices with slice objects in a dictionary. Args: data: The dictionary to process. Returns: The dictionary with string representations of slices replaced by slice objects. """ if isinstance(data, dict): return {k: replace_strings_with_slices(v) for k, v in data.items()} elif isinstance(data, str) and data.startswith("slice("): return string_to_slice(data) else: return data