Source code for omni.isaac.lab.terrains.terrain_generator

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
import os
import torch
import trimesh

import omni.log

from omni.isaac.lab.utils.dict import dict_to_md5_hash
from omni.isaac.lab.utils.io import dump_yaml
from omni.isaac.lab.utils.timer import Timer
from omni.isaac.lab.utils.warp import convert_to_warp_mesh

from .height_field import HfTerrainBaseCfg
from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg
from .trimesh.utils import make_border
from .utils import color_meshes_by_height, find_flat_patches


[docs]class TerrainGenerator: r"""Terrain generator to handle different terrain generation functions. The terrains are represented as meshes. These are obtained either from height fields or by using the `trimesh <https://trimsh.org/trimesh.html>`__ library. The height field representation is more flexible, but it is less computationally and memory efficient than the trimesh representation. All terrain generation functions take in the argument :obj:`difficulty` which determines the complexity of the terrain. The difficulty is a number between 0 and 1, where 0 is the easiest and 1 is the hardest. In most cases, the difficulty is used for linear interpolation between different terrain parameters. For example, in a pyramid stairs terrain the step height is interpolated between the specified minimum and maximum step height. Each sub-terrain has a corresponding configuration class that can be used to specify the parameters of the terrain. The configuration classes are inherited from the :class:`SubTerrainBaseCfg` class which contains the common parameters for all terrains. If a curriculum is used, the terrains are generated based on their difficulty parameter. The difficulty is varied linearly over the number of rows (i.e. along x) with a small random value added to the difficulty to ensure that the columns with the same sub-terrain type are not exactly the same. The difficulty parameter for a sub-terrain at a given row is calculated as: .. math:: \text{difficulty} = \frac{\text{row_id} + \eta}{\text{num_rows}} \times (\text{upper} - \text{lower}) + \text{lower} where :math:`\eta\sim\mathcal{U}(0, 1)` is a random perturbation to the difficulty, and :math:`(\text{lower}, \text{upper})` is the range of the difficulty parameter, specified using the :attr:`~TerrainGeneratorCfg.difficulty_range` parameter. If a curriculum is not used, the terrains are generated randomly. In this case, the difficulty parameter is randomly sampled from the specified range, given by the :attr:`~TerrainGeneratorCfg.difficulty_range` parameter: .. math:: \text{difficulty} \sim \mathcal{U}(\text{lower}, \text{upper}) If the :attr:`~TerrainGeneratorCfg.flat_patch_sampling` is specified for a sub-terrain, flat patches are sampled on the terrain. These can be used for spawning robots, targets, etc. The sampled patches are stored in the :obj:`flat_patches` dictionary. The key specifies the intention of the flat patches and the value is a tensor containing the flat patches for each sub-terrain. If the flag :attr:`~TerrainGeneratorCfg.use_cache` is set to True, the terrains are cached based on their sub-terrain configurations. This means that if the same sub-terrain configuration is used multiple times, the terrain is only generated once and then reused. This is useful when generating complex sub-terrains that take a long time to generate. .. attention:: The terrain generation has its own seed parameter. This is set using the :attr:`TerrainGeneratorCfg.seed` parameter. If the seed is not set and the caching is disabled, the terrain generation may not be completely reproducible. """ terrain_mesh: trimesh.Trimesh """A single trimesh.Trimesh object for all the generated sub-terrains.""" terrain_meshes: list[trimesh.Trimesh] """List of trimesh.Trimesh objects for all the generated sub-terrains.""" terrain_origins: np.ndarray """The origin of each sub-terrain. Shape is (num_rows, num_cols, 3).""" flat_patches: dict[str, torch.Tensor] """A dictionary of sampled valid (flat) patches for each sub-terrain. The dictionary keys are the names of the flat patch sampling configurations. This maps to a tensor containing the flat patches for each sub-terrain. The shape of the tensor is (num_rows, num_cols, num_patches, 3). For instance, the key "root_spawn" maps to a tensor containing the flat patches for spawning an asset. Similarly, the key "target_spawn" maps to a tensor containing the flat patches for setting targets. """
[docs] def __init__(self, cfg: TerrainGeneratorCfg, device: str = "cpu"): """Initialize the terrain generator. Args: cfg: Configuration for the terrain generator. device: The device to use for the flat patches tensor. """ # check inputs if len(cfg.sub_terrains) == 0: raise ValueError("No sub-terrains specified! Please add at least one sub-terrain.") # store inputs self.cfg = cfg self.device = device # set common values to all sub-terrains config for sub_cfg in self.cfg.sub_terrains.values(): # size of all terrains sub_cfg.size = self.cfg.size # params for height field terrains if isinstance(sub_cfg, HfTerrainBaseCfg): sub_cfg.horizontal_scale = self.cfg.horizontal_scale sub_cfg.vertical_scale = self.cfg.vertical_scale sub_cfg.slope_threshold = self.cfg.slope_threshold # throw a warning if the cache is enabled but the seed is not set if self.cfg.use_cache and self.cfg.seed is None: omni.log.warn( "Cache is enabled but the seed is not set. The terrain generation will not be reproducible." " Please set the seed in the terrain generator configuration to make the generation reproducible." ) # if the seed is not set, we assume there is a global seed set and use that. # this ensures that the terrain is reproducible if the seed is set at the beginning of the program. if self.cfg.seed is not None: seed = self.cfg.seed else: seed = np.random.get_state()[1][0] # set the seed for reproducibility # note: we create a new random number generator to avoid affecting the global state # in the other places where random numbers are used. self.np_rng = np.random.default_rng(seed) # buffer for storing valid patches self.flat_patches = {} # create a list of all sub-terrains self.terrain_meshes = list() self.terrain_origins = np.zeros((self.cfg.num_rows, self.cfg.num_cols, 3)) # parse configuration and add sub-terrains # create terrains based on curriculum or randomly if self.cfg.curriculum: with Timer("[INFO] Generating terrains based on curriculum took"): self._generate_curriculum_terrains() else: with Timer("[INFO] Generating terrains randomly took"): self._generate_random_terrains() # add a border around the terrains self._add_terrain_border() # combine all the sub-terrains into a single mesh self.terrain_mesh = trimesh.util.concatenate(self.terrain_meshes) # color the terrain mesh if self.cfg.color_scheme == "height": self.terrain_mesh = color_meshes_by_height(self.terrain_mesh) elif self.cfg.color_scheme == "random": self.terrain_mesh.visual.vertex_colors = self.np_rng.choice( range(256), size=(len(self.terrain_mesh.vertices), 4) ) elif self.cfg.color_scheme == "none": pass else: raise ValueError(f"Invalid color scheme: {self.cfg.color_scheme}.") # offset the entire terrain and origins so that it is centered # -- terrain mesh transform = np.eye(4) transform[:2, -1] = -self.cfg.size[0] * self.cfg.num_rows * 0.5, -self.cfg.size[1] * self.cfg.num_cols * 0.5 self.terrain_mesh.apply_transform(transform) # -- terrain origins self.terrain_origins += transform[:3, -1] # -- valid patches terrain_origins_torch = torch.tensor(self.terrain_origins, dtype=torch.float, device=self.device).unsqueeze(2) for name, value in self.flat_patches.items(): self.flat_patches[name] = value + terrain_origins_torch
def __str__(self): """Return a string representation of the terrain generator.""" msg = "Terrain Generator:" msg += f"\n\tSeed: {self.cfg.seed}" msg += f"\n\tNumber of rows: {self.cfg.num_rows}" msg += f"\n\tNumber of columns: {self.cfg.num_cols}" msg += f"\n\tSub-terrain size: {self.cfg.size}" msg += f"\n\tSub-terrain types: {list(self.cfg.sub_terrains.keys())}" msg += f"\n\tCurriculum: {self.cfg.curriculum}" msg += f"\n\tDifficulty range: {self.cfg.difficulty_range}" msg += f"\n\tColor scheme: {self.cfg.color_scheme}" msg += f"\n\tUse cache: {self.cfg.use_cache}" if self.cfg.use_cache: msg += f"\n\tCache directory: {self.cfg.cache_dir}" return msg """ Terrain generator functions. """ def _generate_random_terrains(self): """Add terrains based on randomly sampled difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # randomly sample sub-terrains for index in range(self.cfg.num_rows * self.cfg.num_cols): # coordinate index of the sub-terrain (sub_row, sub_col) = np.unravel_index(index, (self.cfg.num_rows, self.cfg.num_cols)) # randomly sample terrain index sub_index = self.np_rng.choice(len(proportions), p=proportions) # randomly sample difficulty parameter difficulty = self.np_rng.uniform(*self.cfg.difficulty_range) # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_index]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_index]) def _generate_curriculum_terrains(self): """Add terrains based on the difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # find the sub-terrain index for each column # we generate the terrains based on their proportion (not randomly sampled) sub_indices = [] for index in range(self.cfg.num_cols): sub_index = np.min(np.where(index / self.cfg.num_cols + 0.001 < np.cumsum(proportions))[0]) sub_indices.append(sub_index) sub_indices = np.array(sub_indices, dtype=np.int32) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # curriculum-based sub-terrains for sub_col in range(self.cfg.num_cols): for sub_row in range(self.cfg.num_rows): # vary the difficulty parameter linearly over the number of rows # note: based on the proportion, multiple columns can have the same sub-terrain type. # Thus to increase the diversity along the rows, we add a small random value to the difficulty. # This ensures that the terrains are not exactly the same. For example, if the # the row index is 2 and the number of rows is 10, the nominal difficulty is 0.2. # We add a small random value to the difficulty to make it between 0.2 and 0.3. lower, upper = self.cfg.difficulty_range difficulty = (sub_row + self.np_rng.uniform()) / self.cfg.num_rows difficulty = lower + (upper - lower) * difficulty # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_indices[sub_col]]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_indices[sub_col]]) """ Internal helper functions. """ def _add_terrain_border(self): """Add a surrounding border over all the sub-terrains into the terrain meshes.""" # border parameters border_size = ( self.cfg.num_rows * self.cfg.size[0] + 2 * self.cfg.border_width, self.cfg.num_cols * self.cfg.size[1] + 2 * self.cfg.border_width, ) inner_size = (self.cfg.num_rows * self.cfg.size[0], self.cfg.num_cols * self.cfg.size[1]) border_center = ( self.cfg.num_rows * self.cfg.size[0] / 2, self.cfg.num_cols * self.cfg.size[1] / 2, -self.cfg.border_height / 2, ) # border mesh border_meshes = make_border(border_size, inner_size, height=self.cfg.border_height, position=border_center) border = trimesh.util.concatenate(border_meshes) # update the faces to have minimal triangles selector = ~(np.asarray(border.triangles)[:, :, 2] < -0.1).any(1) border.update_faces(selector) # add the border to the list of meshes self.terrain_meshes.append(border) def _add_sub_terrain( self, mesh: trimesh.Trimesh, origin: np.ndarray, row: int, col: int, sub_terrain_cfg: SubTerrainBaseCfg ): """Add input sub-terrain to the list of sub-terrains. This function adds the input sub-terrain mesh to the list of sub-terrains and updates the origin of the sub-terrain in the list of origins. It also samples flat patches if specified. Args: mesh: The mesh of the sub-terrain. origin: The origin of the sub-terrain. row: The row index of the sub-terrain. col: The column index of the sub-terrain. """ # sample flat patches if specified if sub_terrain_cfg.flat_patch_sampling is not None: omni.log.info(f"Sampling flat patches for sub-terrain at (row, col): ({row}, {col})") # convert the mesh to warp mesh wp_mesh = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=self.device) # sample flat patches based on each patch configuration for that sub-terrain for name, patch_cfg in sub_terrain_cfg.flat_patch_sampling.items(): patch_cfg: FlatPatchSamplingCfg # create the flat patches tensor (if not already created) if name not in self.flat_patches: self.flat_patches[name] = torch.zeros( (self.cfg.num_rows, self.cfg.num_cols, patch_cfg.num_patches, 3), device=self.device ) # add the flat patches to the tensor self.flat_patches[name][row, col] = find_flat_patches( wp_mesh=wp_mesh, origin=origin, num_patches=patch_cfg.num_patches, patch_radius=patch_cfg.patch_radius, x_range=patch_cfg.x_range, y_range=patch_cfg.y_range, z_range=patch_cfg.z_range, max_height_diff=patch_cfg.max_height_diff, ) # transform the mesh to the correct position transform = np.eye(4) transform[0:2, -1] = (row + 0.5) * self.cfg.size[0], (col + 0.5) * self.cfg.size[1] mesh.apply_transform(transform) # add mesh to the list self.terrain_meshes.append(mesh) # add origin to the list self.terrain_origins[row, col] = origin + transform[:3, -1] def _get_terrain_mesh(self, difficulty: float, cfg: SubTerrainBaseCfg) -> tuple[trimesh.Trimesh, np.ndarray]: """Generate a sub-terrain mesh based on the input difficulty parameter. If caching is enabled, the sub-terrain is cached and loaded from the cache if it exists. The cache is stored in the cache directory specified in the configuration. .. Note: This function centers the 2D center of the mesh and its specified origin such that the 2D center becomes :math:`(0, 0)` instead of :math:`(size[0] / 2, size[1] / 2). Args: difficulty: The difficulty parameter. cfg: The configuration of the sub-terrain. Returns: The sub-terrain mesh and origin. """ # copy the configuration cfg = cfg.copy() # add other parameters to the sub-terrain configuration cfg.difficulty = float(difficulty) cfg.seed = self.cfg.seed # generate hash for the sub-terrain sub_terrain_hash = dict_to_md5_hash(cfg.to_dict()) # generate the file name sub_terrain_cache_dir = os.path.join(self.cfg.cache_dir, sub_terrain_hash) sub_terrain_obj_filename = os.path.join(sub_terrain_cache_dir, "mesh.obj") sub_terrain_csv_filename = os.path.join(sub_terrain_cache_dir, "origin.csv") sub_terrain_meta_filename = os.path.join(sub_terrain_cache_dir, "cfg.yaml") # check if hash exists - if true, load the mesh and origin and return if self.cfg.use_cache and os.path.exists(sub_terrain_obj_filename): # load existing mesh mesh = trimesh.load_mesh(sub_terrain_obj_filename, process=False) origin = np.loadtxt(sub_terrain_csv_filename, delimiter=",") # return the generated mesh return mesh, origin # generate the terrain meshes, origin = cfg.function(difficulty, cfg) mesh = trimesh.util.concatenate(meshes) # offset mesh such that they are in their center transform = np.eye(4) transform[0:2, -1] = -cfg.size[0] * 0.5, -cfg.size[1] * 0.5 mesh.apply_transform(transform) # change origin to be in the center of the sub-terrain origin += transform[0:3, -1] # if caching is enabled, save the mesh and origin if self.cfg.use_cache: # create the cache directory os.makedirs(sub_terrain_cache_dir, exist_ok=True) # save the data mesh.export(sub_terrain_obj_filename) np.savetxt(sub_terrain_csv_filename, origin, delimiter=",", header="x,y,z") dump_yaml(sub_terrain_meta_filename, cfg) # return the generated mesh return mesh, origin