Source code for omni.isaac.lab.terrains.height_field.hf_terrains

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""Functions to generate height fields for different terrains."""

from __future__ import annotations

import numpy as np
import scipy.interpolate as interpolate
from typing import TYPE_CHECKING

from .utils import height_field_to_mesh

if TYPE_CHECKING:
    from . import hf_terrains_cfg


[docs]@height_field_to_mesh def random_uniform_terrain(difficulty: float, cfg: hf_terrains_cfg.HfRandomUniformTerrainCfg) -> np.ndarray: """Generate a terrain with height sampled uniformly from a specified range. .. image:: ../../_static/terrains/height_field/random_uniform_terrain.jpg :width: 40% :align: center Note: The :obj:`difficulty` parameter is ignored for this terrain. Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the downsampled scale is smaller than the horizontal scale. """ # check parameters # -- horizontal scale if cfg.downsampled_scale is None: cfg.downsampled_scale = cfg.horizontal_scale elif cfg.downsampled_scale < cfg.horizontal_scale: raise ValueError( "Downsampled scale must be larger than or equal to the horizontal scale:" f" {cfg.downsampled_scale} < {cfg.horizontal_scale}." ) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- downsampled scale width_downsampled = int(cfg.size[0] / cfg.downsampled_scale) length_downsampled = int(cfg.size[1] / cfg.downsampled_scale) # -- height height_min = int(cfg.noise_range[0] / cfg.vertical_scale) height_max = int(cfg.noise_range[1] / cfg.vertical_scale) height_step = int(cfg.noise_step / cfg.vertical_scale) # create range of heights possible height_range = np.arange(height_min, height_max + height_step, height_step) # sample heights randomly from the range along a grid height_field_downsampled = np.random.choice(height_range, size=(width_downsampled, length_downsampled)) # create interpolation function for the sampled heights x = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_downsampled) y = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_downsampled) func = interpolate.RectBivariateSpline(x, y, height_field_downsampled) # interpolate the sampled heights to obtain the height field x_upsampled = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_pixels) y_upsampled = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_pixels) z_upsampled = func(x_upsampled, y_upsampled) # round off the interpolated heights to the nearest vertical step return np.rint(z_upsampled).astype(np.int16)
[docs]@height_field_to_mesh def pyramid_sloped_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidSlopedTerrainCfg) -> np.ndarray: """Generate a terrain with a truncated pyramid structure. The terrain is a pyramid-shaped sloped surface with a slope of :obj:`slope` that trims into a flat platform at the center. The slope is defined as the ratio of the height change along the x axis to the width along the x axis. For example, a slope of 1.0 means that the height changes by 1 unit for every 1 unit of width. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_sloped_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_sloped_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration if cfg.inverted: slope = -cfg.slope_range[0] - difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) else: slope = cfg.slope_range[0] + difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- height # we want the height to be 1/2 of the width since the terrain is a pyramid height_max = int(slope * cfg.size[0] / 2 / cfg.vertical_scale) # -- center of the terrain center_x = int(width_pixels / 2) center_y = int(length_pixels / 2) # create a meshgrid of the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) # offset the meshgrid to the center of the terrain xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y # reshape the meshgrid to be 2D xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a sloped surface hf_raw = np.zeros((width_pixels, length_pixels)) hf_raw = height_max * xx * yy # create a flat platform at the center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale / 2) # get the height of the platform at the corner of the platform x_pf = width_pixels // 2 - platform_width y_pf = length_pixels // 2 - platform_width z_pf = hf_raw[x_pf, y_pf] hf_raw = np.clip(hf_raw, min(0, z_pf), max(0, z_pf)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
[docs]@height_field_to_mesh def pyramid_stairs_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidStairsTerrainCfg) -> np.ndarray: """Generate a terrain with a pyramid stair pattern. The terrain is a pyramid stair pattern which trims to a flat platform at the center of the terrain. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_stairs_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_stairs_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) if cfg.inverted: step_height *= -1 # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stairs step_width = int(cfg.step_width / cfg.horizontal_scale) step_height = int(step_height / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the steps current_step_height = 0 start_x, start_y = 0, 0 stop_x, stop_y = width_pixels, length_pixels while (stop_x - start_x) > platform_width and (stop_y - start_y) > platform_width: # increment position # -- x start_x += step_width stop_x -= step_width # -- y start_y += step_width stop_y -= step_width # increment height current_step_height += step_height # add the step hf_raw[start_x:stop_x, start_y:stop_y] = current_step_height # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
[docs]@height_field_to_mesh def discrete_obstacles_terrain(difficulty: float, cfg: hf_terrains_cfg.HfDiscreteObstaclesTerrainCfg) -> np.ndarray: """Generate a terrain with randomly generated obstacles as pillars with positive and negative heights. The terrain is a flat platform at the center of the terrain with randomly generated obstacles as pillars with positive and negative height. The obstacles are randomly generated cuboids with a random width and height. They are placed randomly on the terrain with a minimum distance of :obj:`cfg.platform_width` from the center of the terrain. .. image:: ../../_static/terrains/height_field/discrete_obstacles_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration obs_height = cfg.obstacle_height_range[0] + difficulty * ( cfg.obstacle_height_range[1] - cfg.obstacle_height_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- obstacles obs_height = int(obs_height / cfg.vertical_scale) obs_width_min = int(cfg.obstacle_width_range[0] / cfg.horizontal_scale) obs_width_max = int(cfg.obstacle_width_range[1] / cfg.horizontal_scale) # -- center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create discrete ranges for the obstacles # -- shape obs_width_range = np.arange(obs_width_min, obs_width_max, 4) obs_length_range = np.arange(obs_width_min, obs_width_max, 4) # -- position obs_x_range = np.arange(0, width_pixels, 4) obs_y_range = np.arange(0, length_pixels, 4) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # generate the obstacles for _ in range(cfg.num_obstacles): # sample size if cfg.obstacle_height_mode == "choice": height = np.random.choice([-obs_height, -obs_height // 2, obs_height // 2, obs_height]) elif cfg.obstacle_height_mode == "fixed": height = obs_height else: raise ValueError(f"Unknown obstacle height mode '{cfg.obstacle_height_mode}'. Must be 'choice' or 'fixed'.") width = int(np.random.choice(obs_width_range)) length = int(np.random.choice(obs_length_range)) # sample position x_start = int(np.random.choice(obs_x_range)) y_start = int(np.random.choice(obs_y_range)) # clip start position to the terrain if x_start + width > width_pixels: x_start = width_pixels - width if y_start + length > length_pixels: y_start = length_pixels - length # add to terrain hf_raw[x_start : x_start + width, y_start : y_start + length] = height # clip the terrain to the platform x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
[docs]@height_field_to_mesh def wave_terrain(difficulty: float, cfg: hf_terrains_cfg.HfWaveTerrainCfg) -> np.ndarray: r"""Generate a terrain with a wave pattern. The terrain is a flat platform at the center of the terrain with a wave pattern. The wave pattern is generated by adding sinusoidal waves based on the number of waves and the amplitude of the waves. The height of the terrain at a point :math:`(x, y)` is given by: .. math:: h(x, y) = A \left(\sin\left(\frac{2 \pi x}{\lambda}\right) + \cos\left(\frac{2 \pi y}{\lambda}\right) \right) where :math:`A` is the amplitude of the waves, :math:`\lambda` is the wavelength of the waves. .. image:: ../../_static/terrains/height_field/wave_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the number of waves is non-positive. """ # check number of waves if cfg.num_waves < 0: raise ValueError(f"Number of waves must be a positive integer. Got: {cfg.num_waves}.") # resolve terrain configuration amplitude = cfg.amplitude_range[0] + difficulty * (cfg.amplitude_range[1] - cfg.amplitude_range[0]) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) amplitude_pixels = int(0.5 * amplitude / cfg.vertical_scale) # compute the wave number: nu = 2 * pi / lambda wave_length = length_pixels / cfg.num_waves wave_number = 2 * np.pi / wave_length # create meshgrid for the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the waves hf_raw += amplitude_pixels * (np.cos(yy * wave_number) + np.sin(xx * wave_number)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
[docs]@height_field_to_mesh def stepping_stones_terrain(difficulty: float, cfg: hf_terrains_cfg.HfSteppingStonesTerrainCfg) -> np.ndarray: """Generate a terrain with a stepping stones pattern. The terrain is a stepping stones pattern which trims to a flat platform at the center of the terrain. .. image:: ../../_static/terrains/height_field/stepping_stones_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration stone_width = cfg.stone_width_range[1] - difficulty * (cfg.stone_width_range[1] - cfg.stone_width_range[0]) stone_distance = cfg.stone_distance_range[0] + difficulty * ( cfg.stone_distance_range[1] - cfg.stone_distance_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stones stone_distance = int(stone_distance / cfg.horizontal_scale) stone_width = int(stone_width / cfg.horizontal_scale) stone_height_max = int(cfg.stone_height_max / cfg.vertical_scale) # -- holes holes_depth = int(cfg.holes_depth / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create range of heights stone_height_range = np.arange(-stone_height_max - 1, stone_height_max, step=1) # create a terrain with a flat platform at the center hf_raw = np.full((width_pixels, length_pixels), holes_depth) # add the stones start_x, start_y = 0, 0 # -- if the terrain is longer than it is wide then fill the terrain column by column if length_pixels >= width_pixels: while start_y < length_pixels: # ensure that stone stops along y-axis stop_y = min(length_pixels, start_y + stone_width) # randomly sample x-position start_x = np.random.randint(0, stone_width) stop_x = max(0, start_x - stone_distance) # fill first stone hf_raw[0:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) # fill row with stones while start_x < width_pixels: stop_x = min(width_pixels, start_x + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_x += stone_width + stone_distance # update y-position start_y += stone_width + stone_distance elif width_pixels > length_pixels: while start_x < width_pixels: # ensure that stone stops along x-axis stop_x = min(width_pixels, start_x + stone_width) # randomly sample y-position start_y = np.random.randint(0, stone_width) stop_y = max(0, start_y - stone_distance) # fill first stone hf_raw[start_x:stop_x, 0:stop_y] = np.random.choice(stone_height_range) # fill column with stones while start_y < length_pixels: stop_y = min(length_pixels, start_y + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_y += stone_width + stone_distance # update x-position start_x += stone_width + stone_distance # add the platform in the center x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)