# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
from __future__ import annotations
import torch
from collections.abc import Sequence
from typing import TYPE_CHECKING
import omni.isaac.core.utils.stage as stage_utils
import omni.physics.tensors.impl.api as physx
from pxr import UsdPhysics
import omni.isaac.lab.sim as sim_utils
import omni.isaac.lab.utils.math as math_utils
from omni.isaac.lab.markers import VisualizationMarkers
from ..sensor_base import SensorBase
from .imu_data import ImuData
if TYPE_CHECKING:
from .imu_cfg import ImuCfg
[docs]class Imu(SensorBase):
"""The Inertia Measurement Unit (IMU) sensor.
The sensor can be attached to any :class:`RigidObject` or :class:`Articulation` in the scene. The sensor provides complete state information.
The sensor is primarily used to provide the linear acceleration and angular velocity of the object in the body frame. The sensor also provides
the position and orientation of the object in the world frame and the angular acceleration and linear velocity in the body frame. The extra
data outputs are useful for simulating with or comparing against "perfect" state estimation.
.. note::
We are computing the accelerations using numerical differentiation from the velocities. Consequently, the
IMU sensor accuracy depends on the chosen phsyx timestep. For a sufficient accuracy, we recommend to keep the
timestep at least as 200Hz.
.. note::
It is suggested to use the OffsetCfg to define an IMU frame relative to a rigid body prim defined at the root of
a :class:`RigidObject` or a prim that is defined by a non-fixed joint in an :class:`Articulation` (except for the
root of a fixed based articulation). The use frames with fixed joints and small mass/inertia to emulate a transform
relative to a body frame can result in lower performance and accuracy.
"""
cfg: ImuCfg
"""The configuration parameters."""
[docs] def __init__(self, cfg: ImuCfg):
"""Initializes the Imu sensor.
Args:
cfg: The configuration parameters.
"""
# initialize base class
super().__init__(cfg)
# Create empty variables for storing output data
self._data = ImuData()
def __str__(self) -> str:
"""Returns: A string containing information about the instance."""
return (
f"Imu sensor @ '{self.cfg.prim_path}': \n"
f"\tview type : {self._view.__class__}\n"
f"\tupdate period (s) : {self.cfg.update_period}\n"
f"\tnumber of sensors : {self._view.count}\n"
)
"""
Properties
"""
@property
def data(self) -> ImuData:
# update sensors if needed
self._update_outdated_buffers()
# return the data
return self._data
@property
def num_instances(self) -> int:
return self._view.count
"""
Operations
"""
[docs] def reset(self, env_ids: Sequence[int] | None = None):
# reset the timestamps
super().reset(env_ids)
# resolve None
if env_ids is None:
env_ids = slice(None)
# reset accumulative data buffers
self._data.quat_w[env_ids] = 0.0
self._data.lin_vel_b[env_ids] = 0.0
self._data.ang_vel_b[env_ids] = 0.0
self._data.lin_acc_b[env_ids] = 0.0
self._data.ang_acc_b[env_ids] = 0.0
def update(self, dt: float, force_recompute: bool = False):
# save timestamp
self._dt = dt
# execute updating
super().update(dt, force_recompute)
"""
Implementation.
"""
def _initialize_impl(self):
"""Initializes the sensor handles and internal buffers.
This function creates handles and registers the provided data types with the replicator registry to
be able to access the data from the sensor. It also initializes the internal buffers to store the data.
Raises:
RuntimeError: If the imu prim is not a RigidBodyPrim
"""
# Initialize parent class
super()._initialize_impl()
# create simulation view
self._physics_sim_view = physx.create_simulation_view(self._backend)
self._physics_sim_view.set_subspace_roots("/")
# check if the prim at path is a rigid prim
prim = sim_utils.find_first_matching_prim(self.cfg.prim_path)
if prim is None:
raise RuntimeError(f"Failed to find a prim at path expression: {self.cfg.prim_path}")
# check if it is a RigidBody Prim
if prim.HasAPI(UsdPhysics.RigidBodyAPI):
self._view = self._physics_sim_view.create_rigid_body_view(self.cfg.prim_path.replace(".*", "*"))
else:
raise RuntimeError(f"Failed to find a RigidBodyAPI for the prim paths: {self.cfg.prim_path}")
# Create internal buffers
self._initialize_buffers_impl()
def _update_buffers_impl(self, env_ids: Sequence[int]):
"""Fills the buffers of the sensor data."""
# check if self._dt is set (this is set in the update function)
if not hasattr(self, "_dt"):
raise RuntimeError(
"The update function must be called before the data buffers are accessed the first time."
)
# default to all sensors
if len(env_ids) == self._num_envs:
env_ids = slice(None)
# obtain the poses of the sensors
pos_w, quat_w = self._view.get_transforms()[env_ids].split([3, 4], dim=-1)
quat_w = math_utils.convert_quat(quat_w, to="wxyz")
# store the poses
self._data.pos_w[env_ids] = pos_w + math_utils.quat_rotate(quat_w, self._offset_pos_b[env_ids])
self._data.quat_w[env_ids] = math_utils.quat_mul(quat_w, self._offset_quat_b[env_ids])
# get the offset from COM to link origin
com_pos_b = self._view.get_coms().to(self.device).split([3, 4], dim=-1)[0]
# obtain the velocities of the link COM
lin_vel_w, ang_vel_w = self._view.get_velocities()[env_ids].split([3, 3], dim=-1)
# if an offset is present or the COM does not agree with the link origin, the linear velocity has to be
# transformed taking the angular velocity into account
lin_vel_w += torch.linalg.cross(
ang_vel_w, math_utils.quat_rotate(quat_w, self._offset_pos_b[env_ids] - com_pos_b[env_ids]), dim=-1
)
# numerical derivative
lin_acc_w = (lin_vel_w - self._prev_lin_vel_w[env_ids]) / self._dt + self._gravity_bias_w[env_ids]
ang_acc_w = (ang_vel_w - self._prev_ang_vel_w[env_ids]) / self._dt
# store the velocities
self._data.lin_vel_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], lin_vel_w)
self._data.ang_vel_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], ang_vel_w)
# store the accelerations
self._data.lin_acc_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], lin_acc_w)
self._data.ang_acc_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], ang_acc_w)
self._prev_lin_vel_w[env_ids] = lin_vel_w
self._prev_ang_vel_w[env_ids] = ang_vel_w
def _initialize_buffers_impl(self):
"""Create buffers for storing data."""
# data buffers
self._data.pos_w = torch.zeros(self._view.count, 3, device=self._device)
self._data.quat_w = torch.zeros(self._view.count, 4, device=self._device)
self._data.quat_w[:, 0] = 1.0
self._data.lin_vel_b = torch.zeros_like(self._data.pos_w)
self._data.ang_vel_b = torch.zeros_like(self._data.pos_w)
self._data.lin_acc_b = torch.zeros_like(self._data.pos_w)
self._data.ang_acc_b = torch.zeros_like(self._data.pos_w)
self._prev_lin_vel_w = torch.zeros_like(self._data.pos_w)
self._prev_ang_vel_w = torch.zeros_like(self._data.pos_w)
# store sensor offset transformation
self._offset_pos_b = torch.tensor(list(self.cfg.offset.pos), device=self._device).repeat(self._view.count, 1)
self._offset_quat_b = torch.tensor(list(self.cfg.offset.rot), device=self._device).repeat(self._view.count, 1)
# set gravity bias
self._gravity_bias_w = torch.tensor(list(self.cfg.gravity_bias), device=self._device).repeat(
self._view.count, 1
)
def _set_debug_vis_impl(self, debug_vis: bool):
# set visibility of markers
# note: parent only deals with callbacks. not their visibility
if debug_vis:
# create markers if necessary for the first tome
if not hasattr(self, "acceleration_visualizer"):
self.acceleration_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg)
# set their visibility to true
self.acceleration_visualizer.set_visibility(True)
else:
if hasattr(self, "acceleration_visualizer"):
self.acceleration_visualizer.set_visibility(False)
def _debug_vis_callback(self, event):
# safely return if view becomes invalid
# note: this invalidity happens because of isaac sim view callbacks
if self._view is None:
return
# get marker location
# -- base state
base_pos_w = self._data.pos_w.clone()
base_pos_w[:, 2] += 0.5
# -- resolve the scales
default_scale = self.acceleration_visualizer.cfg.markers["arrow"].scale
arrow_scale = torch.tensor(default_scale, device=self.device).repeat(self._data.lin_acc_b.shape[0], 1)
# get up axis of current stage
up_axis = stage_utils.get_stage_up_axis()
# arrow-direction
quat_opengl = math_utils.quat_from_matrix(
math_utils.create_rotation_matrix_from_view(
self._data.pos_w,
self._data.pos_w + math_utils.quat_rotate(self._data.quat_w, self._data.lin_acc_b),
up_axis=up_axis,
device=self._device,
)
)
quat_w = math_utils.convert_camera_frame_orientation_convention(quat_opengl, "opengl", "world")
# display markers
self.acceleration_visualizer.visualize(base_pos_w, quat_w, arrow_scale)