# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
# needed to import for allowing type-hinting: np.ndarray | None
from __future__ import annotations
import gymnasium as gym
import math
import numpy as np
import torch
from collections.abc import Sequence
from typing import Any, ClassVar
from omni.isaac.version import get_version
from omni.isaac.lab.managers import CommandManager, CurriculumManager, RewardManager, TerminationManager
from omni.isaac.lab.ui.widgets import ManagerLiveVisualizer
from .common import VecEnvStepReturn
from .manager_based_env import ManagerBasedEnv
from .manager_based_rl_env_cfg import ManagerBasedRLEnvCfg
[docs]class ManagerBasedRLEnv(ManagerBasedEnv, gym.Env):
"""The superclass for the manager-based workflow reinforcement learning-based environments.
This class inherits from :class:`ManagerBasedEnv` and implements the core functionality for
reinforcement learning-based environments. It is designed to be used with any RL
library. The class is designed to be used with vectorized environments, i.e., the
environment is expected to be run in parallel with multiple sub-environments. The
number of sub-environments is specified using the ``num_envs``.
Each observation from the environment is a batch of observations for each sub-
environments. The method :meth:`step` is also expected to receive a batch of actions
for each sub-environment.
While the environment itself is implemented as a vectorized environment, we do not
inherit from :class:`gym.vector.VectorEnv`. This is mainly because the class adds
various methods (for wait and asynchronous updates) which are not required.
Additionally, each RL library typically has its own definition for a vectorized
environment. Thus, to reduce complexity, we directly use the :class:`gym.Env` over
here and leave it up to library-defined wrappers to take care of wrapping this
environment for their agents.
Note:
For vectorized environments, it is recommended to **only** call the :meth:`reset`
method once before the first call to :meth:`step`, i.e. after the environment is created.
After that, the :meth:`step` function handles the reset of terminated sub-environments.
This is because the simulator does not support resetting individual sub-environments
in a vectorized environment.
"""
is_vector_env: ClassVar[bool] = True
"""Whether the environment is a vectorized environment."""
metadata: ClassVar[dict[str, Any]] = {
"render_modes": [None, "human", "rgb_array"],
"isaac_sim_version": get_version(),
}
"""Metadata for the environment."""
cfg: ManagerBasedRLEnvCfg
"""Configuration for the environment."""
[docs] def __init__(self, cfg: ManagerBasedRLEnvCfg, render_mode: str | None = None, **kwargs):
"""Initialize the environment.
Args:
cfg: The configuration for the environment.
render_mode: The render mode for the environment. Defaults to None, which
is similar to ``"human"``.
"""
# initialize the base class to setup the scene.
super().__init__(cfg=cfg)
# store the render mode
self.render_mode = render_mode
# initialize data and constants
# -- counter for curriculum
self.common_step_counter = 0
# -- init buffers
self.episode_length_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
# -- set the framerate of the gym video recorder wrapper so that the playback speed of the produced video matches the simulation
self.metadata["render_fps"] = 1 / self.step_dt
print("[INFO]: Completed setting up the environment...")
"""
Properties.
"""
@property
def max_episode_length_s(self) -> float:
"""Maximum episode length in seconds."""
return self.cfg.episode_length_s
@property
def max_episode_length(self) -> int:
"""Maximum episode length in environment steps."""
return math.ceil(self.max_episode_length_s / self.step_dt)
"""
Operations - Setup.
"""
[docs] def load_managers(self):
# note: this order is important since observation manager needs to know the command and action managers
# and the reward manager needs to know the termination manager
# -- command manager
self.command_manager: CommandManager = CommandManager(self.cfg.commands, self)
print("[INFO] Command Manager: ", self.command_manager)
# call the parent class to load the managers for observations and actions.
super().load_managers()
# prepare the managers
# -- termination manager
self.termination_manager = TerminationManager(self.cfg.terminations, self)
print("[INFO] Termination Manager: ", self.termination_manager)
# -- reward manager
self.reward_manager = RewardManager(self.cfg.rewards, self)
print("[INFO] Reward Manager: ", self.reward_manager)
# -- curriculum manager
self.curriculum_manager = CurriculumManager(self.cfg.curriculum, self)
print("[INFO] Curriculum Manager: ", self.curriculum_manager)
# setup the action and observation spaces for Gym
self._configure_gym_env_spaces()
# perform events at the start of the simulation
if "startup" in self.event_manager.available_modes:
self.event_manager.apply(mode="startup")
[docs] def setup_manager_visualizers(self):
"""Creates live visualizers for manager terms."""
self.manager_visualizers = {
"action_manager": ManagerLiveVisualizer(manager=self.action_manager),
"observation_manager": ManagerLiveVisualizer(manager=self.observation_manager),
"command_manager": ManagerLiveVisualizer(manager=self.command_manager),
"termination_manager": ManagerLiveVisualizer(manager=self.termination_manager),
"reward_manager": ManagerLiveVisualizer(manager=self.reward_manager),
"curriculum_manager": ManagerLiveVisualizer(manager=self.curriculum_manager),
}
"""
Operations - MDP
"""
[docs] def step(self, action: torch.Tensor) -> VecEnvStepReturn:
"""Execute one time-step of the environment's dynamics and reset terminated environments.
Unlike the :class:`ManagerBasedEnv.step` class, the function performs the following operations:
1. Process the actions.
2. Perform physics stepping.
3. Perform rendering if gui is enabled.
4. Update the environment counters and compute the rewards and terminations.
5. Reset the environments that terminated.
6. Compute the observations.
7. Return the observations, rewards, resets and extras.
Args:
action: The actions to apply on the environment. Shape is (num_envs, action_dim).
Returns:
A tuple containing the observations, rewards, resets (terminated and truncated) and extras.
"""
# process actions
self.action_manager.process_action(action.to(self.device))
self.recorder_manager.record_pre_step()
# check if we need to do rendering within the physics loop
# note: checked here once to avoid multiple checks within the loop
is_rendering = self.sim.has_gui() or self.sim.has_rtx_sensors()
# perform physics stepping
for _ in range(self.cfg.decimation):
self._sim_step_counter += 1
# set actions into buffers
self.action_manager.apply_action()
# set actions into simulator
self.scene.write_data_to_sim()
# simulate
self.sim.step(render=False)
# render between steps only if the GUI or an RTX sensor needs it
# note: we assume the render interval to be the shortest accepted rendering interval.
# If a camera needs rendering at a faster frequency, this will lead to unexpected behavior.
if self._sim_step_counter % self.cfg.sim.render_interval == 0 and is_rendering:
self.sim.render()
# update buffers at sim dt
self.scene.update(dt=self.physics_dt)
# post-step:
# -- update env counters (used for curriculum generation)
self.episode_length_buf += 1 # step in current episode (per env)
self.common_step_counter += 1 # total step (common for all envs)
# -- check terminations
self.reset_buf = self.termination_manager.compute()
self.reset_terminated = self.termination_manager.terminated
self.reset_time_outs = self.termination_manager.time_outs
# -- reward computation
self.reward_buf = self.reward_manager.compute(dt=self.step_dt)
if len(self.recorder_manager.active_terms) > 0:
# update observations for recording if needed
self.obs_buf = self.observation_manager.compute()
self.recorder_manager.record_post_step()
# -- reset envs that terminated/timed-out and log the episode information
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
# trigger recorder terms for pre-reset calls
self.recorder_manager.record_pre_reset(reset_env_ids)
self._reset_idx(reset_env_ids)
# update articulation kinematics
self.scene.write_data_to_sim()
self.sim.forward()
# if sensors are added to the scene, make sure we render to reflect changes in reset
if self.sim.has_rtx_sensors() and self.cfg.rerender_on_reset:
self.sim.render()
# trigger recorder terms for post-reset calls
self.recorder_manager.record_post_reset(reset_env_ids)
# -- update command
self.command_manager.compute(dt=self.step_dt)
# -- step interval events
if "interval" in self.event_manager.available_modes:
self.event_manager.apply(mode="interval", dt=self.step_dt)
# -- compute observations
# note: done after reset to get the correct observations for reset envs
self.obs_buf = self.observation_manager.compute()
# return observations, rewards, resets and extras
return self.obs_buf, self.reward_buf, self.reset_terminated, self.reset_time_outs, self.extras
[docs] def render(self, recompute: bool = False) -> np.ndarray | None:
"""Run rendering without stepping through the physics.
By convention, if mode is:
- **human**: Render to the current display and return nothing. Usually for human consumption.
- **rgb_array**: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an
x-by-y pixel image, suitable for turning into a video.
Args:
recompute: Whether to force a render even if the simulator has already rendered the scene.
Defaults to False.
Returns:
The rendered image as a numpy array if mode is "rgb_array". Otherwise, returns None.
Raises:
RuntimeError: If mode is set to "rgb_data" and simulation render mode does not support it.
In this case, the simulation render mode must be set to ``RenderMode.PARTIAL_RENDERING``
or ``RenderMode.FULL_RENDERING``.
NotImplementedError: If an unsupported rendering mode is specified.
"""
# run a rendering step of the simulator
# if we have rtx sensors, we do not need to render again sin
if not self.sim.has_rtx_sensors() and not recompute:
self.sim.render()
# decide the rendering mode
if self.render_mode == "human" or self.render_mode is None:
return None
elif self.render_mode == "rgb_array":
# check that if any render could have happened
if self.sim.render_mode.value < self.sim.RenderMode.PARTIAL_RENDERING.value:
raise RuntimeError(
f"Cannot render '{self.render_mode}' when the simulation render mode is"
f" '{self.sim.render_mode.name}'. Please set the simulation render mode to:"
f"'{self.sim.RenderMode.PARTIAL_RENDERING.name}' or '{self.sim.RenderMode.FULL_RENDERING.name}'."
" If running headless, make sure --enable_cameras is set."
)
# create the annotator if it does not exist
if not hasattr(self, "_rgb_annotator"):
import omni.replicator.core as rep
# create render product
self._render_product = rep.create.render_product(
self.cfg.viewer.cam_prim_path, self.cfg.viewer.resolution
)
# create rgb annotator -- used to read data from the render product
self._rgb_annotator = rep.AnnotatorRegistry.get_annotator("rgb", device="cpu")
self._rgb_annotator.attach([self._render_product])
# obtain the rgb data
rgb_data = self._rgb_annotator.get_data()
# convert to numpy array
rgb_data = np.frombuffer(rgb_data, dtype=np.uint8).reshape(*rgb_data.shape)
# return the rgb data
# note: initially the renerer is warming up and returns empty data
if rgb_data.size == 0:
return np.zeros((self.cfg.viewer.resolution[1], self.cfg.viewer.resolution[0], 3), dtype=np.uint8)
else:
return rgb_data[:, :, :3]
else:
raise NotImplementedError(
f"Render mode '{self.render_mode}' is not supported. Please use: {self.metadata['render_modes']}."
)
[docs] def close(self):
if not self._is_closed:
# destructor is order-sensitive
del self.command_manager
del self.reward_manager
del self.termination_manager
del self.curriculum_manager
# call the parent class to close the environment
super().close()
"""
Helper functions.
"""
def _configure_gym_env_spaces(self):
"""Configure the action and observation spaces for the Gym environment."""
# observation space (unbounded since we don't impose any limits)
self.single_observation_space = gym.spaces.Dict()
for group_name, group_term_names in self.observation_manager.active_terms.items():
# extract quantities about the group
has_concatenated_obs = self.observation_manager.group_obs_concatenate[group_name]
group_dim = self.observation_manager.group_obs_dim[group_name]
# check if group is concatenated or not
# if not concatenated, then we need to add each term separately as a dictionary
if has_concatenated_obs:
self.single_observation_space[group_name] = gym.spaces.Box(low=-np.inf, high=np.inf, shape=group_dim)
else:
self.single_observation_space[group_name] = gym.spaces.Dict({
term_name: gym.spaces.Box(low=-np.inf, high=np.inf, shape=term_dim)
for term_name, term_dim in zip(group_term_names, group_dim)
})
# action space (unbounded since we don't impose any limits)
action_dim = sum(self.action_manager.action_term_dim)
self.single_action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(action_dim,))
# batch the spaces for vectorized environments
self.observation_space = gym.vector.utils.batch_space(self.single_observation_space, self.num_envs)
self.action_space = gym.vector.utils.batch_space(self.single_action_space, self.num_envs)
def _reset_idx(self, env_ids: Sequence[int]):
"""Reset environments based on specified indices.
Args:
env_ids: List of environment ids which must be reset
"""
# update the curriculum for environments that need a reset
self.curriculum_manager.compute(env_ids=env_ids)
# reset the internal buffers of the scene elements
self.scene.reset(env_ids)
# apply events such as randomizations for environments that need a reset
if "reset" in self.event_manager.available_modes:
env_step_count = self._sim_step_counter // self.cfg.decimation
self.event_manager.apply(mode="reset", env_ids=env_ids, global_env_step_count=env_step_count)
# iterate over all managers and reset them
# this returns a dictionary of information which is stored in the extras
# note: This is order-sensitive! Certain things need be reset before others.
self.extras["log"] = dict()
# -- observation manager
info = self.observation_manager.reset(env_ids)
self.extras["log"].update(info)
# -- action manager
info = self.action_manager.reset(env_ids)
self.extras["log"].update(info)
# -- rewards manager
info = self.reward_manager.reset(env_ids)
self.extras["log"].update(info)
# -- curriculum manager
info = self.curriculum_manager.reset(env_ids)
self.extras["log"].update(info)
# -- command manager
info = self.command_manager.reset(env_ids)
self.extras["log"].update(info)
# -- event manager
info = self.event_manager.reset(env_ids)
self.extras["log"].update(info)
# -- termination manager
info = self.termination_manager.reset(env_ids)
self.extras["log"].update(info)
# -- recorder manager
info = self.recorder_manager.reset(env_ids)
self.extras["log"].update(info)
# reset the episode length buffer
self.episode_length_buf[env_ids] = 0