Source code for omni.isaac.lab.envs.direct_marl_env

# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

from __future__ import annotations

import builtins
import gymnasium as gym
import inspect
import math
import numpy as np
import torch
import weakref
from abc import abstractmethod
from collections.abc import Sequence
from dataclasses import MISSING
from typing import Any, ClassVar

import omni.isaac.core.utils.torch as torch_utils
import omni.kit.app
import omni.log
from omni.isaac.version import get_version

from omni.isaac.lab.managers import EventManager
from omni.isaac.lab.scene import InteractiveScene
from omni.isaac.lab.sim import SimulationContext
from omni.isaac.lab.utils.noise import NoiseModel
from omni.isaac.lab.utils.timer import Timer

from .common import ActionType, AgentID, EnvStepReturn, ObsType, StateType
from .direct_marl_env_cfg import DirectMARLEnvCfg
from .ui import ViewportCameraController
from .utils.spaces import sample_space, spec_to_gym_space


[docs]class DirectMARLEnv(gym.Env): """The superclass for the direct workflow to design multi-agent environments. This class implements the core functionality for multi-agent reinforcement learning (MARL) environments. It is designed to be used with any RL library. The class is designed to be used with vectorized environments, i.e., the environment is expected to be run in parallel with multiple sub-environments. The design of this class is based on the PettingZoo Parallel API. While the environment itself is implemented as a vectorized environment, we do not inherit from :class:`pettingzoo.ParallelEnv` or :class:`gym.vector.VectorEnv`. This is mainly because the class adds various attributes and methods that are inconsistent with them. Note: For vectorized environments, it is recommended to **only** call the :meth:`reset` method once before the first call to :meth:`step`, i.e. after the environment is created. After that, the :meth:`step` function handles the reset of terminated sub-environments. This is because the simulator does not support resetting individual sub-environments in a vectorized environment. """ metadata: ClassVar[dict[str, Any]] = { "render_modes": [None, "human", "rgb_array"], "isaac_sim_version": get_version(), } """Metadata for the environment."""
[docs] def __init__(self, cfg: DirectMARLEnvCfg, render_mode: str | None = None, **kwargs): """Initialize the environment. Args: cfg: The configuration object for the environment. render_mode: The render mode for the environment. Defaults to None, which is similar to ``"human"``. Raises: RuntimeError: If a simulation context already exists. The environment must always create one since it configures the simulation context and controls the simulation. """ # check that the config is valid cfg.validate() # store inputs to class self.cfg = cfg # store the render mode self.render_mode = render_mode # initialize internal variables self._is_closed = False # set the seed for the environment if self.cfg.seed is not None: self.cfg.seed = self.seed(self.cfg.seed) else: omni.log.warn("Seed not set for the environment. The environment creation may not be deterministic.") # create a simulation context to control the simulator if SimulationContext.instance() is None: self.sim: SimulationContext = SimulationContext(self.cfg.sim) else: raise RuntimeError("Simulation context already exists. Cannot create a new one.") # print useful information print("[INFO]: Base environment:") print(f"\tEnvironment device : {self.device}") print(f"\tEnvironment seed : {self.cfg.seed}") print(f"\tPhysics step-size : {self.physics_dt}") print(f"\tRendering step-size : {self.physics_dt * self.cfg.sim.render_interval}") print(f"\tEnvironment step-size : {self.step_dt}") if self.cfg.sim.render_interval < self.cfg.decimation: msg = ( f"The render interval ({self.cfg.sim.render_interval}) is smaller than the decimation " f"({self.cfg.decimation}). Multiple render calls will happen for each environment step." "If this is not intended, set the render interval to be equal to the decimation." ) omni.log.warn(msg) # generate scene with Timer("[INFO]: Time taken for scene creation", "scene_creation"): self.scene = InteractiveScene(self.cfg.scene) self._setup_scene() print("[INFO]: Scene manager: ", self.scene) # set up camera viewport controller # viewport is not available in other rendering modes so the function will throw a warning # FIXME: This needs to be fixed in the future when we unify the UI functionalities even for # non-rendering modes. if self.sim.render_mode >= self.sim.RenderMode.PARTIAL_RENDERING: self.viewport_camera_controller = ViewportCameraController(self, self.cfg.viewer) else: self.viewport_camera_controller = None # play the simulator to activate physics handles # note: this activates the physics simulation view that exposes TensorAPIs # note: when started in extension mode, first call sim.reset_async() and then initialize the managers if builtins.ISAAC_LAUNCHED_FROM_TERMINAL is False: print("[INFO]: Starting the simulation. This may take a few seconds. Please wait...") with Timer("[INFO]: Time taken for simulation start", "simulation_start"): self.sim.reset() # -- event manager used for randomization if self.cfg.events: self.event_manager = EventManager(self.cfg.events, self) print("[INFO] Event Manager: ", self.event_manager) # make sure torch is running on the correct device if "cuda" in self.device: torch.cuda.set_device(self.device) # check if debug visualization is has been implemented by the environment source_code = inspect.getsource(self._set_debug_vis_impl) self.has_debug_vis_implementation = "NotImplementedError" not in source_code self._debug_vis_handle = None # extend UI elements # we need to do this here after all the managers are initialized # this is because they dictate the sensors and commands right now if self.sim.has_gui() and self.cfg.ui_window_class_type is not None: self._window = self.cfg.ui_window_class_type(self, window_name="IsaacLab") else: # if no window, then we don't need to store the window self._window = None # allocate dictionary to store metrics self.extras = {agent: {} for agent in self.cfg.possible_agents} # initialize data and constants # -- counter for simulation steps self._sim_step_counter = 0 # -- counter for curriculum self.common_step_counter = 0 # -- init buffers self.episode_length_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) self.reset_buf = torch.zeros(self.num_envs, dtype=torch.bool, device=self.sim.device) # setup the observation, state and action spaces self._configure_env_spaces() # setup noise cfg for adding action and observation noise if self.cfg.action_noise_model: self._action_noise_model: dict[AgentID, NoiseModel] = { agent: noise_model.class_type(noise_model, num_envs=self.num_envs, device=self.device) for agent, noise_model in self.cfg.action_noise_model.items() if noise_model is not None } if self.cfg.observation_noise_model: self._observation_noise_model: dict[AgentID, NoiseModel] = { agent: noise_model.class_type(noise_model, num_envs=self.num_envs, device=self.device) for agent, noise_model in self.cfg.observation_noise_model.items() if noise_model is not None } # perform events at the start of the simulation if self.cfg.events: if "startup" in self.event_manager.available_modes: self.event_manager.apply(mode="startup") # print the environment information print("[INFO]: Completed setting up the environment...")
def __del__(self): """Cleanup for the environment.""" self.close() """ Properties. """ @property def num_envs(self) -> int: """The number of instances of the environment that are running.""" return self.scene.num_envs @property def num_agents(self) -> int: """Number of current agents. The number of current agents may change as the environment progresses (e.g.: agents can be added or removed). """ return len(self.agents) @property def max_num_agents(self) -> int: """Number of all possible agents the environment can generate. This value remains constant as the environment progresses. """ return len(self.possible_agents) @property def unwrapped(self) -> DirectMARLEnv: """Get the unwrapped environment underneath all the layers of wrappers.""" return self @property def physics_dt(self) -> float: """The physics time-step (in s). This is the lowest time-decimation at which the simulation is happening. """ return self.cfg.sim.dt @property def step_dt(self) -> float: """The environment stepping time-step (in s). This is the time-step at which the environment steps forward. """ return self.cfg.sim.dt * self.cfg.decimation @property def device(self): """The device on which the environment is running.""" return self.sim.device @property def max_episode_length_s(self) -> float: """Maximum episode length in seconds.""" return self.cfg.episode_length_s @property def max_episode_length(self): """The maximum episode length in steps adjusted from s.""" return math.ceil(self.max_episode_length_s / (self.cfg.sim.dt * self.cfg.decimation)) """ Space methods """
[docs] def observation_space(self, agent: AgentID) -> gym.Space: """Get the observation space for the specified agent. Returns: The agent's observation space. """ return self.observation_spaces[agent]
[docs] def action_space(self, agent: AgentID) -> gym.Space: """Get the action space for the specified agent. Returns: The agent's action space. """ return self.action_spaces[agent]
""" Operations. """
[docs] def reset( self, seed: int | None = None, options: dict[str, Any] | None = None ) -> tuple[dict[AgentID, ObsType], dict[AgentID, dict]]: """Resets all the environments and returns observations. Args: seed: The seed to use for randomization. Defaults to None, in which case the seed is not set. options: Additional information to specify how the environment is reset. Defaults to None. Note: This argument is used for compatibility with Gymnasium environment definition. Returns: A tuple containing the observations and extras (keyed by the agent ID). """ # set the seed if seed is not None: self.seed(seed) # reset state of scene indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) self._reset_idx(indices) # update observations and the list of current agents (sorted as in possible_agents) self.obs_dict = self._get_observations() self.agents = [agent for agent in self.possible_agents if agent in self.obs_dict] # return observations return self.obs_dict, self.extras
[docs] def step(self, actions: dict[AgentID, ActionType]) -> EnvStepReturn: """Execute one time-step of the environment's dynamics. The environment steps forward at a fixed time-step, while the physics simulation is decimated at a lower time-step. This is to ensure that the simulation is stable. These two time-steps can be configured independently using the :attr:`DirectMARLEnvCfg.decimation` (number of simulation steps per environment step) and the :attr:`DirectMARLEnvCfg.sim.physics_dt` (physics time-step). Based on these parameters, the environment time-step is computed as the product of the two. This function performs the following steps: 1. Pre-process the actions before stepping through the physics. 2. Apply the actions to the simulator and step through the physics in a decimated manner. 3. Compute the reward and done signals. 4. Reset environments that have terminated or reached the maximum episode length. 5. Apply interval events if they are enabled. 6. Compute observations. Args: actions: The actions to apply on the environment (keyed by the agent ID). Shape of individual tensors is (num_envs, action_dim). Returns: A tuple containing the observations, rewards, resets (terminated and truncated) and extras (keyed by the agent ID). """ actions = {agent: action.to(self.device) for agent, action in actions.items()} # add action noise if self.cfg.action_noise_model: for agent, action in actions.items(): if agent in self._action_noise_model: actions[agent] = self._action_noise_model[agent].apply(action) # process actions self._pre_physics_step(actions) # check if we need to do rendering within the physics loop # note: checked here once to avoid multiple checks within the loop is_rendering = self.sim.has_gui() or self.sim.has_rtx_sensors() # perform physics stepping for _ in range(self.cfg.decimation): self._sim_step_counter += 1 # set actions into buffers self._apply_action() # set actions into simulator self.scene.write_data_to_sim() # simulate self.sim.step(render=False) # render between steps only if the GUI or an RTX sensor needs it # note: we assume the render interval to be the shortest accepted rendering interval. # If a camera needs rendering at a faster frequency, this will lead to unexpected behavior. if self._sim_step_counter % self.cfg.sim.render_interval == 0 and is_rendering: self.sim.render() # update buffers at sim dt self.scene.update(dt=self.physics_dt) # post-step: # -- update env counters (used for curriculum generation) self.episode_length_buf += 1 # step in current episode (per env) self.common_step_counter += 1 # total step (common for all envs) self.terminated_dict, self.time_out_dict = self._get_dones() self.reset_buf[:] = math.prod(self.terminated_dict.values()) | math.prod(self.time_out_dict.values()) self.reward_dict = self._get_rewards() # -- reset envs that terminated/timed-out and log the episode information reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self._reset_idx(reset_env_ids) # post-step: step interval event if self.cfg.events: if "interval" in self.event_manager.available_modes: self.event_manager.apply(mode="interval", dt=self.step_dt) # update observations and the list of current agents (sorted as in possible_agents) self.obs_dict = self._get_observations() self.agents = [agent for agent in self.possible_agents if agent in self.obs_dict] # add observation noise # note: we apply no noise to the state space (since it is used for centralized training or critic networks) if self.cfg.observation_noise_model: for agent, obs in self.obs_dict.items(): if agent in self._observation_noise_model: self.obs_dict[agent] = self._observation_noise_model[agent].apply(obs) # return observations, rewards, resets and extras return self.obs_dict, self.reward_dict, self.terminated_dict, self.time_out_dict, self.extras
[docs] def state(self) -> StateType | None: """Returns the state for the environment. The state-space is used for centralized training or asymmetric actor-critic architectures. It is configured using the :attr:`DirectMARLEnvCfg.state_space` parameter. Returns: The states for the environment, or None if :attr:`DirectMARLEnvCfg.state_space` parameter is zero. """ if not self.cfg.state_space: return None # concatenate and return the observations as state # FIXME: This implementation assumes the spaces are fundamental ones. Fix it to support composite spaces if isinstance(self.cfg.state_space, int) and self.cfg.state_space < 0: self.state_buf = torch.cat( [self.obs_dict[agent].reshape(self.num_envs, -1) for agent in self.cfg.possible_agents], dim=-1 ) # compute and return custom environment state else: self.state_buf = self._get_states() return self.state_buf
[docs] @staticmethod def seed(seed: int = -1) -> int: """Set the seed for the environment. Args: seed: The seed for random generator. Defaults to -1. Returns: The seed used for random generator. """ # set seed for replicator try: import omni.replicator.core as rep rep.set_global_seed(seed) except ModuleNotFoundError: pass # set seed for torch and other libraries return torch_utils.set_seed(seed)
[docs] def render(self, recompute: bool = False) -> np.ndarray | None: """Run rendering without stepping through the physics. By convention, if mode is: - **human**: Render to the current display and return nothing. Usually for human consumption. - **rgb_array**: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video. Args: recompute: Whether to force a render even if the simulator has already rendered the scene. Defaults to False. Returns: The rendered image as a numpy array if mode is "rgb_array". Otherwise, returns None. Raises: RuntimeError: If mode is set to "rgb_data" and simulation render mode does not support it. In this case, the simulation render mode must be set to ``RenderMode.PARTIAL_RENDERING`` or ``RenderMode.FULL_RENDERING``. NotImplementedError: If an unsupported rendering mode is specified. """ # run a rendering step of the simulator # if we have rtx sensors, we do not need to render again sin if not self.sim.has_rtx_sensors() and not recompute: self.sim.render() # decide the rendering mode if self.render_mode == "human" or self.render_mode is None: return None elif self.render_mode == "rgb_array": # check that if any render could have happened if self.sim.render_mode.value < self.sim.RenderMode.PARTIAL_RENDERING.value: raise RuntimeError( f"Cannot render '{self.render_mode}' when the simulation render mode is" f" '{self.sim.render_mode.name}'. Please set the simulation render mode to:" f"'{self.sim.RenderMode.PARTIAL_RENDERING.name}' or '{self.sim.RenderMode.FULL_RENDERING.name}'." " If running headless, make sure --enable_cameras is set." ) # create the annotator if it does not exist if not hasattr(self, "_rgb_annotator"): import omni.replicator.core as rep # create render product self._render_product = rep.create.render_product( self.cfg.viewer.cam_prim_path, self.cfg.viewer.resolution ) # create rgb annotator -- used to read data from the render product self._rgb_annotator = rep.AnnotatorRegistry.get_annotator("rgb", device="cpu") self._rgb_annotator.attach([self._render_product]) # obtain the rgb data rgb_data = self._rgb_annotator.get_data() # convert to numpy array rgb_data = np.frombuffer(rgb_data, dtype=np.uint8).reshape(*rgb_data.shape) # return the rgb data # note: initially the renderer is warming up and returns empty data if rgb_data.size == 0: return np.zeros((self.cfg.viewer.resolution[1], self.cfg.viewer.resolution[0], 3), dtype=np.uint8) else: return rgb_data[:, :, :3] else: raise NotImplementedError( f"Render mode '{self.render_mode}' is not supported. Please use: {self.metadata['render_modes']}." )
[docs] def close(self): """Cleanup for the environment.""" if not self._is_closed: # close entities related to the environment # note: this is order-sensitive to avoid any dangling references if self.cfg.events: del self.event_manager del self.scene if self.viewport_camera_controller is not None: del self.viewport_camera_controller # clear callbacks and instance self.sim.clear_all_callbacks() self.sim.clear_instance() # destroy the window if self._window is not None: self._window = None # update closing status self._is_closed = True
""" Operations - Debug Visualization. """
[docs] def set_debug_vis(self, debug_vis: bool) -> bool: """Toggles the environment debug visualization. Args: debug_vis: Whether to visualize the environment debug visualization. Returns: Whether the debug visualization was successfully set. False if the environment does not support debug visualization. """ # check if debug visualization is supported if not self.has_debug_vis_implementation: return False # toggle debug visualization objects self._set_debug_vis_impl(debug_vis) # toggle debug visualization handles if debug_vis: # create a subscriber for the post update event if it doesn't exist if self._debug_vis_handle is None: app_interface = omni.kit.app.get_app_interface() self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event) ) else: # remove the subscriber if it exists if self._debug_vis_handle is not None: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None # return success return True
""" Helper functions. """ def _configure_env_spaces(self): """Configure the spaces for the environment.""" self.agents = self.cfg.possible_agents self.possible_agents = self.cfg.possible_agents # show deprecation message and overwrite configuration if self.cfg.num_actions is not None: omni.log.warn("DirectMARLEnvCfg.num_actions is deprecated. Use DirectMARLEnvCfg.action_spaces instead.") if isinstance(self.cfg.action_spaces, type(MISSING)): self.cfg.action_spaces = self.cfg.num_actions if self.cfg.num_observations is not None: omni.log.warn( "DirectMARLEnvCfg.num_observations is deprecated. Use DirectMARLEnvCfg.observation_spaces instead." ) if isinstance(self.cfg.observation_spaces, type(MISSING)): self.cfg.observation_spaces = self.cfg.num_observations if self.cfg.num_states is not None: omni.log.warn("DirectMARLEnvCfg.num_states is deprecated. Use DirectMARLEnvCfg.state_space instead.") if isinstance(self.cfg.state_space, type(MISSING)): self.cfg.state_space = self.cfg.num_states # set up observation and action spaces self.observation_spaces = { agent: spec_to_gym_space(self.cfg.observation_spaces[agent]) for agent in self.cfg.possible_agents } self.action_spaces = { agent: spec_to_gym_space(self.cfg.action_spaces[agent]) for agent in self.cfg.possible_agents } # set up state space if not self.cfg.state_space: self.state_space = None if isinstance(self.cfg.state_space, int) and self.cfg.state_space < 0: self.state_space = gym.spaces.flatten_space( gym.spaces.Tuple([self.observation_spaces[agent] for agent in self.cfg.possible_agents]) ) else: self.state_space = spec_to_gym_space(self.cfg.state_space) # instantiate actions (needed for tasks for which the observations computation is dependent on the actions) self.actions = { agent: sample_space(self.action_spaces[agent], self.sim.device, batch_size=self.num_envs, fill_value=0) for agent in self.cfg.possible_agents } def _reset_idx(self, env_ids: Sequence[int]): """Reset environments based on specified indices. Args: env_ids: List of environment ids which must be reset """ self.scene.reset(env_ids) # apply events such as randomization for environments that need a reset if self.cfg.events: if "reset" in self.event_manager.available_modes: env_step_count = self._sim_step_counter // self.cfg.decimation self.event_manager.apply(mode="reset", env_ids=env_ids, global_env_step_count=env_step_count) # reset noise models if self.cfg.action_noise_model: for noise_model in self._action_noise_model.values(): noise_model.reset(env_ids) if self.cfg.observation_noise_model: for noise_model in self._observation_noise_model.values(): noise_model.reset(env_ids) # reset the episode length buffer self.episode_length_buf[env_ids] = 0 """ Implementation-specific functions. """ def _setup_scene(self): """Setup the scene for the environment. This function is responsible for creating the scene objects and setting up the scene for the environment. The scene creation can happen through :class:`omni.isaac.lab.scene.InteractiveSceneCfg` or through directly creating the scene objects and registering them with the scene manager. We leave the implementation of this function to the derived classes. If the environment does not require any explicit scene setup, the function can be left empty. """ pass @abstractmethod def _pre_physics_step(self, actions: dict[AgentID, ActionType]): """Pre-process actions before stepping through the physics. This function is responsible for pre-processing the actions before stepping through the physics. It is called before the physics stepping (which is decimated). Args: actions: The actions to apply on the environment (keyed by the agent ID). Shape of individual tensors is (num_envs, action_dim). """ raise NotImplementedError(f"Please implement the '_pre_physics_step' method for {self.__class__.__name__}.") @abstractmethod def _apply_action(self): """Apply actions to the simulator. This function is responsible for applying the actions to the simulator. It is called at each physics time-step. """ raise NotImplementedError(f"Please implement the '_apply_action' method for {self.__class__.__name__}.") @abstractmethod def _get_observations(self) -> dict[AgentID, ObsType]: """Compute and return the observations for the environment. Returns: The observations for the environment (keyed by the agent ID). """ raise NotImplementedError(f"Please implement the '_get_observations' method for {self.__class__.__name__}.") @abstractmethod def _get_states(self) -> StateType: """Compute and return the states for the environment. This method is only called (and therefore has to be implemented) when the :attr:`DirectMARLEnvCfg.state_space` parameter is not a number less than or equal to zero. Returns: The states for the environment. """ raise NotImplementedError(f"Please implement the '_get_states' method for {self.__class__.__name__}.") @abstractmethod def _get_rewards(self) -> dict[AgentID, torch.Tensor]: """Compute and return the rewards for the environment. Returns: The rewards for the environment (keyed by the agent ID). Shape of individual tensors is (num_envs,). """ raise NotImplementedError(f"Please implement the '_get_rewards' method for {self.__class__.__name__}.") @abstractmethod def _get_dones(self) -> tuple[dict[AgentID, torch.Tensor], dict[AgentID, torch.Tensor]]: """Compute and return the done flags for the environment. Returns: A tuple containing the done flags for termination and time-out (keyed by the agent ID). Shape of individual tensors is (num_envs,). """ raise NotImplementedError(f"Please implement the '_get_dones' method for {self.__class__.__name__}.") def _set_debug_vis_impl(self, debug_vis: bool): """Set debug visualization into visualization objects. This function is responsible for creating the visualization objects if they don't exist and input ``debug_vis`` is True. If the visualization objects exist, the function should set their visibility into the stage. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.")